MTN STUDIES

5

An Economic Analysis of the Effects of the Tokyo Round of Multilateral Trade Negotiations on the United States and the Other Major Industrialized Countries

COMMITTEE ON FINANCE

LNITED STATES SE.NATE
Ressell B. LoNg, Chairman

1 Report Prepared at the Request of the

SLBCOMMITTEE ON INTERNATIONAL TRADE

Abraham Ribicoff, Chairman

JCNE 1979

Printed fur the use of the Cimmittee on Finance

C S GOVERNXENT PRINTING OFFICE:
WASHINGTUN $19: 9$

For ale by the Superintiadeat of Lucuments, C.S. Gorernment Priating OABe

Prepared for the Comintree on Finance Caited Siates Senate Jure 12, 1979

(Executive Summary)

an economic analysis of the effects
 OF THE TOKYO ROLND OF MULTILATERAL trade necotiations on the lilited states AND THE OTHER MANOR INDUSTRLALIZED
 COUNTRIES

by

Alan V. Deardorff and Robert M. Stern University of Michigan, Ann Arbor

The Tokyo Round of Multilateral Trade Negotiations (MTN) has resulted in agreements to reduce tariffs significantly, to elininate or reduce the scope of a number of nontariff barriers, and to alter or forsalize certain codes of international economic oehavior in ways that should help to liberalize trade ϵ en further in the future. In our report we have tried, as far as possible, to quantify all but the last of these aspects of the negotiations. In particular, we have estimated the effects on employment, exchange rates, prices, and economic welfare, both of the negotiated tariff reductions and of those changes in nontariff barriers (XIB's) that we were able to quantify. The results, which are sumarized in Table 1 , agree, by and large, with earlier studies that have found the effects of trade liberalization to be beneficial but rather small. In particular, it is unlikely that implementation of the negotiated changes will cause significant dislocation in labor markets, especially in the U.S.

As shown in the table, we expect the main results of the MTN to be as follows:
(1) Employment will increase by a small amourt in all countries except Japan and Switzerland. The increase for the United States is about 15 thousand workers. In percentage terms, these changes are no more than $\mathfrak{f e w}$ tenths of one per cent of the labor force in any country and still less in the U.S.
(2) Exchange rates will chacge to a sall extent. The U.S. dollar will depreciate very slightly (two tenths of one per cent), as will such curreacies as the French franc and the British pound. The deutsche mark and the yen will appreciate very silghtiy.
(3) Import and therefore consumer prices will fall to a limited extent in all courtries. Fcr the U.S., the decline is less than one-teath of one per cent.
(4) Economic welfare will be increased in all countries except Switzeriand. The weliare gain for the U.S. is estimated at becween $\$ 1$ and $\$ 1.5$ billion dollars, which is less than one tenth of one fer cent of U.'S. gross domestic product.

Al of these changes, sall as they are, assume that the changes in tariffs and SIB's that have been negctiated are so be implemented all at once. In fact, they will be phased in over a number of y :ars, so that the effects that will occur in any one year will be even smaller than noted.

The country resuits in Table 1 mask much industry detail. Such detail dould be too cumbersome to report in this sumary, but it is an important part of our report. The increase in C.S. employment, for example, is not shared by all industries. However, the employment declines even at the industry level are never more than one per cent of industry empioyment.

TAEIPI

いい」ıй	－HAYGE IS EAPL J，J UF DUFEES	8 concif is RPDLCYEM：	－cuance in －ppect EICHG f17E	PCuAnie In PRIC：Ibjeia．	belfaff is OF is？
AUsInALIA	J． 6	－．：	c．ist	－3． 37	0.31
ALSind	0.1	2．3	c．14	－3．18	0.14
Caxald	2.2	2． 2	0.24	－3． 20	0.17
Eúucpar ijemsaity	110.1	3.12		-3.35	0.13
	15．${ }^{\text {d }}$	3．40	0.91	－3． 17	0.27
Sthisun	5．9，	3.24	0． 07	－-.51	0.07
tbable	－5．	3．1：	－3． 19	－3．30	0.10
－	$2 . .3$	0.69	3.07	－7． 53	0.02
18：idas	4.$)$	2.10	2.26	－．9． 23	0.53
its． 1	：2．9	－． 67	－3．05	－7． 5	0.12
bEi：antilasju	9.5	3.10	0.29	－3． 71	0.32
Juitics kIm．0．a	22.5	J． 06	－3． 13	－0． 22	0.27
Elbidsid	5.5	C． 21	－0．26	－0．23	0.15
JAPAm	－11．0	－3． 02	0.23	－0． 38	0.03
yev zidiamo	2.3	J． 17	－0．01	－0． 14	0.19
yoitar	1.5	C． 15	－7． 55	－0．10	0.13
steuen	5.4	2． 13	－0． 22	－3．33	0.11
suiticistalid	－9．8	－0．35	－0．08	－0． 37	－0． 20
Uniaid states	15.0	c． 12	－0．20	－0．01	0.06
ALL ivuteies	133.7	0．C5		－0．20	0．08

－PUSLaIVE SIGM AEABS APPRECIARIOX：NEGATIVE SIGM MEABS EEPRECIATION． －KEELES TO AY IMDEX UP IAPCBT AYD HONE PPICES．

All of these results derive from a large computational model of world production and trade that we have developed in recent years at the Cniversity of Michigan. The model includes explicit markets for 22 tradable and 7 nontradable industries, which together provide exhaustive coverage of world proJuction. These narkets are ileared both natiunally, for each of the 18 major industrialized countries, and internationally, to capture trade among these countries and between them and the rest of the world. Exchange rates are also inciuded in the model and may be either held fixed or allowed to vary to clear markets :or foreign exchange. Once a given set of changes in, say, tariffs or NTB's is introduced into the model, it can be solved for the resulting charges in output, prices, trade, and employment for each of the 29 inciustries and 18 countries as well as for changes in exchange rates for each country. ie also calcuiate separately a measure of the change in economic welfare in each country.
we appiled the model first to the tariff changes that have been negotiated in the MTN. These changes, which were made available to us by the Office of the L.S. Special Irade Representative, show an average depth of cut of aboul 26 per cent. Most of the countries participating in the MTN agreed to use some variant of the Swiss formula as the starting point for negotiating. In the end, the tariff cuts offered by the United States show a depth of cut that is fairly close to what would have been obtained under the Swiss Formula. All other countries, however, offered noticeably smaller average cuts than they would have using the formala. As a result, the negotiated tariff cuts are somewhat larger for the U.S. than for such important trading entities as the European Community and Japan.

We used our model to estimate the effects of these tariff changes alone. The results, assuming flexiole exchange rates, were very similar to those in Table 1. We also ran the model under the assumption that exchange rates were
fixed, although these results are less relevent to today's international enviroasent than those which assume exchange-rate flexibility.

Nontariff barriers are in general much more difficult to quantify than are tariffs. Based on complaints filed with STR, we constructed an inventory of such barriers as faced by American exporters, but this inventory could not be used to make numerical estimates of their sizes or effects. Therefore, in our estimates, we have focused on two specific NTB's for which numerical information was available. The first pertains to trade in agricultural comeodities, for which the U.S. has obtained concessions from most of its trading partners in the form of increased import quotas and has made soee concessions of its own pertaining to imports of cheese. The second NTB for which quantitative information was available pertained to governmentprocurement regulations. Here we were given estimates of the total amount of government expenditure in each country that was subject to such regulation and would be liberalized as a result of the negotiations.

We used our model, then, to analyze the effects of both the agricultural concessions and the procurement liberalization. The results were mostly similar to those of the tariff changes discussed above, though even smaller in magnitude.

The combined effects of both tariffs and these NTB's were also estimated, giving the results reported in Table 1 which we have already noted. Our general conclusion, then, is as follows. Those aspects of the MTN which we have been able to quantify -- including both tariff changes and liberalization of certain NTB's -- appear to be beneficial for almost all of the countries involved, including the U.S. Adjustment problems in labor markets appear to be elther nonexistent or negligible at the country level. And even at the more disaggregated industry level, where employment changes occasionally amount
to several per cent of an industry's labor force in some of the smaller countries, these adjustment problems should be slight, given that the changes are to be phased in over a period of up to a decade.

an economic analysis of the effects of the tokyo
 round of mulilateral trade negotiations on the united states
 AND THE OTHER MAJOR INDUSTRLALIZED COUNTRIES

by

Alan V. Deardorff and Robert M. Stern University of Michigan, Ann Arbor

A Report for the Comittee on Finance United States Senate

Acixnowledgements

The research in this report was carried out under the auspices of the Comittee on Finance of the U.S. Senate. ie are indebted especially to william Finan for his assistance throughout and for coments on a preliminary version of our results. Much of the data underlying the research was obtained in computer-readable form from the Office of the Special Irade Representative in hashington. ie would like particularly to thank Geza Feketekuty, Barry Goldberg, Jerome La Pittus, and other members of STR for furnishing and helping us to interfret the data and the preliminary results. Robert Sarsfield of the $\mathrm{l} . \mathrm{S}$. Departaent of State was instrumental in our obtaining the lnited Nations trade tapes that were used in the study.
we want to give special thanks to werner Riedl, whose programing and data-management skills were crucial in the organization and inplementation of the research. Jerry Iempalski and Prachaya Jumpasut are also to be thanked for their assistance in gathering and processing the data on production and employment used in the research. we owe a special debt to Mrs. Francisca Patton for her highly proficient and unerring typing and her spirit of cooperation in getting everything done. Amy Copperman also lent an able hand in the final stages of typing.
Acknowledgements x
Table of Contents x
List of Tables xiii
List of Figures xviii
Section Page
I. Introduction 1
Salient Characteristics of Cnited States Foreign Trade Costs and Benefits of Trade Restriction and Liberalization Plan of Analysis
II. The Model 18
The Structure of the ModelModeling Tariffs, NTB's, and Economic helfareSpecial Characteristics and CaveatsImplementation of the Model
III. Effects of Multilateral Tariff Reductions 34The Patiern of Employment, Trade, and Protection in 1976Tariff Offers in the MTN
Economic Effects of the MTN Tariff Reductions
IV. Effects of Changes in Nontariff Barriers 68Frequency Distribution of Complaints Filed with SIRAgriculcu:eGovernment ProchrementCustoms ValuationOther Xontariff Barriers
V. Combined Effects of Reductions in Tariffs and Nontariff Barriers 93Economic Effects of the Combined Reductions in MTN Tariffsand NTB'sSensitivity of Results to Changes in Parameters
VI. Effects on the Rest of world 110
Industrial Country Tariffs on Rest-of-World Imports Changes in Net Exports by Sector of Rest of World
VII. Summary 117

Appendix

A The Model . 121

B Welfare Effects . 142
C Data . 146
D Fixed Exchange-Rate Results 169
E Flexible Exchange-Rate Results 191

Bibliography . 220
1 Exports and Imports as a Percentage of GNP in the United States, 1960, 1970, and 1978
2 Exports and Imports as a Percentage of GNP in the United States and Other Major Industrialized Ccuntries 4
3 Commodity Composition of United States Merchandise Trade, 1972 and 1977 5
4 United States Total Merchandise Exports, Imports, and Trade Balances by Commodity Groups, 1972 and 1977 7
5 United States Trade Balances by Area and Commodity Groups, 1972 and 1977 10
6 The Pattern of U.S. Employment, Trade, and Protection in 1976 35
7 Average Post-Kennedy Round Tariff Rates on Industrial Products in the Major Industrialized Countries 38
8 Post-Kennedy Round Base Rate Tariffs on Industrial Products by ISIC Sector in the Major Industrialized Countries 41
9 MTN Offer Rate Tariffs on Industrial Products by ISIC Sector in the Major Industrialized Countries 42
10 Percentaga Tariff Reductions on Industrial Products Offered by the Major Industrialized Countries in the MTN, as of April 15, 1979 43
11 Average Post-Kennedy Round Base Rate Tariffs on Industrial Products, MTN Offer Rate Tariffs, and Percentage Depth of Cut in the Major In- dustrialized Countries in the MTN 44
12 Versions of the Swiss Formula Used in the MTN by the Major Negotiating Countries 46
13 Percentage Tariff Reductions on Industrial Products Based on the Swiss Formula 47
14 Average Percentage Depth of Cut in Tariffs on Industrial Products by the Major Industrialized Countries in the MTN, Based on Actual Offers and Use of Swiss Formula 48
15 Absolute Changes in Employment under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Tariff Reductions in the MTN 54
16
Percentage Changes in Employment under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries due to Tariif Reductions in the MTN 56
17 Percentage Price and Exchange-Rate Effects under Flexible Exchange Rates in the Major Industrialized Countries Due to Tariff Reductions in the MTN 60
18 Changes in Economic Welfare in the Major Industrialized Countries Due to Tariff Reductions in the MTN 64
19 Total Number of Complaints Concerning Nontariff Measures Filed with STR by U.S. Exporters, 1975-78: Classified by Type of Measure and Region 70
20 Number of Complaints Concerning Nontariff Measures Filed with STR by U.S. Exporters, 1975-78: Classified by Type of Measure, Industry, and Region 71
21 Estimated Increases in U.S. Agricultural Exports by Commodity and Country as a Result of NTB Reductions in the MTN 76
22
Changes in Employment and Economic Welfare in the U.S. and Other Major Industrialized Countries Due to Agricultural Con- cessions in the MTN 78
23 Estimated Amount of Liberalization of Nondefense Government Procurement by the Major Industrialized Countries in the MTN 81
24. Changes in Employment and Economic Welfare in the U.S. and Other Major Industrialized Countries Due to the Liberali- zation of Govemment Procurement in the MTN. 84
25
Selected Examples of Foreign Uplifts in Customs Valuation 87
26
Some Illustrative Calculations of the Implicit Tariff Effects of Customs Uplifts on Chemical Products 89
27 Absolute Ch.anges in Employment under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 95
28
Percentage Changes in Employment under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 97Changes in Economic Welfare in the Major IndustrializedCountries Due to the Combined Effects of Reductions in Tariffsand NTB's in the MTN102
31 The Overall Effects of Reductions in Tariffs, Agricultural Concessions, and Government-Procurement Liberalization in the MTN under Conditions of Flexible Exchange Rates 104
32 Sensitivity of Employment and Welfare Effects of the Combined Reductions in Tariffs and NTB's in the MTN to Doubling of Supply and Substitution Elasticities 106
33 Weighted Average Tariffs and Depth of Cut by the Major Indus- trialized Countries in the MTN, Weighted by Imports from Other Industrialized Countries and Rest of World 111
34 Changes in Net Exports of Rest of World in Response to Reduc- tions in Tariffs in the MTN and the Combined Reductions in Tariffs and NTB's 113
C. 1 Value of Production by ISIC Sector in the Major Industrialized Countries, 1976 147
C. 2 Exports by ISIC Sector in the Major Industrialized Countries, 1976 148
C. 3 Imports by ISIC Sector in the Major Industrialized Countries, 1976 149
C. 4 Employment by ISIC Sector in the Major Industrialized Countries, 1976 150
C. 5 Post-Kennedy Round Base Rate Tariffs on Industrial Products by ISIC Sector in the Major Industrialized Countries, Weighted by World Imports 151
C. 6 MTN Offer Rates on Industrial Products by ISIC Sector in the Major Industrialized Countries, Weighted by World Laports 152
C. 7 Indexes of Nontariff Restrictions by ISIC Sector in the Major Industrialized Countries 153
C. 8 Tariff ReJuctions as Proportions of (1 + t) 154
C. 9 Post-Kenneay Round Base Rate Tariffs on Industrial Products by ISIC Sector in the Major Industrialized Countries, Weighted by Imports from Other Industrialized Countries. 156
C. 10 Post-Kennedy Round Base Rate Tariffs on Industrial Products by ISIC Sector in the Major Industrialized Countries, Weighted by Imports from Rest of World 157
C.ll MTN Offer Rate Tariffs on Industrial Products by ISIC Sector in the Major Industrialized Countries, Weighted by Imports from Other Industrialized Countries 158
C. 12 MTN Offer Rate Tariffs on Industrial Products by ISIC Sactor in the Major Industrialized Countries, Weighted by Imports from Rest of World 159
C. 13 Percentage Tariff Reductions on Industrial Products Offered by the Major Industrialized Countries in the MTN, Weighted by Imports from Other Industrialized Countries 160
C. 14 Percentage Tariff Reductions on Industrial Froducts Offered by the Major industrialized Countries in the MTN, Weighted by Imports from Rest of World 161
D. 1 Changes in Exports under Fixed Exchange Rates by ISIC Sector in the Wajor Industrialized Countries Due to Tariff Reductions in the MTN 163
D. 2 Changes in Imports under Fixed Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Tariff Reductions in the MTN 165
D. 3 Absolute Changes in Employment Under Fixed Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Tariff Reduc- tions in the MTN 167
D. 4 Percentage Changes in Employment under Fixed Exchange Rates by ISIC. Sector in the Major Industrialized Countries Due to Tariff Reductions in the MTN 169
D. 5 Absolute Changes in Employment under Fixed Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Agricultural Concessiuns in the MTN 170
D. 6 Absolute Changes in Employment under Fixed Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Liberalization of Government Procurement in the MTN 172
D. 7 Changes in Exports under Fixed Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 174
D. 8 Changes in Imports under Fixed Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 176
D. 9 Absolute Changes in Employment under Fixed Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 178
D. 10 Percentage Changes in Employment under Fixed Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 180
E. 1 Percentage Changes in Export Prices under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Tariff Reductions in the MTN 184
E. 2 Percentage Changes in Import Prices under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Tariff Reductions in the MTN 186
E. 3 Percentage Changes in Home Prices under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Courtries Due to Tariff Reductions in the MTN 188
E. 4 Percentage Changes in Index of Import and Home Prices under Flexible Exchange Rates by ISIC Sector in the Major Indus- trialized Countries Due to Tariff Reductions in the uTN 190
E. 5 Changes in Exports under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Tariff Reductions in the MTN 192
E. 6 Changes in Imports under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Tariff Reductions in the MIN 194
E. 7 Absolute Changes in Employment under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Agricultural Concessions in the MTN 196
E. 8 Absolute Changes in Employment under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to Liberal- ization of Government Procurement in thi MTN 198
E. 9 Percentage Changes in Export Prices under Flexible Exchange Rates by ISIC Sector in the Major Industria!ized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 200
E. 10 Percentage Changes in Import Prices under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 202
E. 11 Percentage Changes in Home Prices under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions of Tariffs and NTB's in the MTN 204
E. 12 Percentage Changes in the Index of Import and Home Prices under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 206
E. 13 Changes in Exports under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions and Tariffs and NTB's in the MTN 208
E. 14 Changes in Imports under Flexible Exchange Rates by ISIC Sector in the Major Industrialized Countries Due to the Combined Effects of Reductions in Tariffs and NTB's in the MTN 210

LIST OF FIGURES

Figure Page
1 Country System 20
2 World System 21
B. 1 Changes in Economic Welfare, with Given Demand and Supply Function 143
B. 2 Changes in Economic Welfare, with Shift in Demand Function 143

I. Introduction

The conclusion of the Tokyo Round of Multilateral Trade Negotiations (MTN) in 1979 is another important milestone in international comarcial diplomacy. It marks the seventh round of multilateral reductions in international trade barriers that have been negotiated under the auspices of the General Agreement on Tariffs and Trade (GATT) since the end of World War II. Tariffs on industrial products were last reduced on a major scale in the Kennedy Round, which was concluded in 1967 with the reductions being phased in over the following five years. Tariffs will be reduced even further as a result of the MTN, and this time the reductions will be phased in over a period of up to eight years. But what is perhaps an equally noteworthy accomplishment of the MTN is the negotiation of a series of codes covering nontariff barriers. Depending upon how these codes will be interpreted and adhered to by the major industrialized countries, they could result in some significant reductions in nontariff barriers as well as a clarification and harmonization of the rules and practices that governments will follow in their policies involving international trade.

The purpose of our study is to provide an analysis of the economic effects on the United States and the other major industrialized countries of the reductions in tariffs and nontariff barriers that have been negotiated in the MTN. Our analysis will be based primarily on a disaggregated model of world production and trade that we have developed in recent years at the University of Michigan. We will have occasion below to present and discuss in detail our model and the results of our analysis. But before doing so, it will be useful to :eview briefly some of the salient charac-
teristics of U.S. foreign trade and to discuss the costs and benefits of trade restrictions and liberalization. We hope thereby to provide some perspective for viewing our analytical results concerning the MTN.

Salient Characteristics of United States Foreign Trade

It may be appropriate first to consider how important fore.gn trade is in the U.S. economy. A common measure is the ratio of trade to gross national product. Thus, for example, as noted in Table l, U.S. merchandise exports and imports were equal, respectively, to 6.8 and 8.2 per cent of GNP in 1978. Considering both merchandise and services, the percentages were 8.4 for exports and 9.8 for imports. While these percentages are relatively small, it is evident from Table 1 that they have risen very substantially in the past two decades.

An alternative measure of the importance of trade would ie to express exports and imports as a percentage of expenditures on tradable goods. If the relevant data were available, the percentages would certainly be larger than those shown in Table 1. There would also be sizable differences in the importance of trade for individual sectors and industries. It should be noted in addition that the importance of trade will vary from country to country. This is evident from the data recorded in Table 2 for the l.S. and some of the other major industrialized countries.

The data in Table 1 further reflect the shift in the U.S. balance of trade and balance on goods and services that has taken place in the past two decades. A surplus was recorded in 1960, there was balance in 1970, and a substantial deficit in 1978. This deficit was $\$ 28.6$ billion on trade and \$31.1 billion on goods and services.

The composition of U.S. merchandise trade by major
commodity groups for 1972 and 1977 is indicated in Table 3.

Table 1
Exports and Imports as a Percentage of GNP in the United States, 1960, 1970, and 1978

	1960	1970	1978
Merchandise only (fob) ${ }^{\text {a }}$			
Exports	3.9\%	4.3%	6.8%
Imports	3.0	4.1	8.2
Goods and Services ${ }^{\text {b }}$			
Exports	4.8	5.5	8.4
Imports	4.4	5.5	9.8

${ }^{\text {a Measured on a transactions basis. }}$
$b_{\text {Measured on }}$ a national accounts basis.

Source: Adapted from International Monetary Fund, International Financial Statistics.

Table 2

Exports and Imports as a Percentage of GNP in the United States and Other Major Industrialized Countries

Colnty	Year	Merchandise Only ${ }^{\mathbf{a}}$		Goods and Services ${ }^{\text {b }}$	
		Exports	Imports	Exports	Imports
United States	1978	6.8%	8.2%	8.4%	9.8%
Canada	1978	23.6	22.1	25.8	25.7
Japan	1977	11.6	9.1	13.7	12.1
West Germany	1978	22.1	18.3	27.1	24.3
France	1976	16.3	17.5	19.1	20.3
Italy	1977	23.2	23.1	26.2	26.9
United Ringdoa	1977	23.6	24.7	30.9	30.1
${ }^{\text {a }}$ Measured on a transactions basis. $b_{\text {Measured on }}$ a national accounts basis.					
Source: International Monetary Fund, International Financialatistics.					

Table 3
Commdity Composition of United States Merchandise Trade, 1972 and 1971

	1972		1977	
	Exports	Imports	Exports	Imports
Food, raw materiais, ores f other minetala	25.18	20.5\%	26.2\%	15.18
Fuels	3.3	8.6	3.7	29.9
Metals, climalcals, \& other semimanuiactures	16.1	19.1	16.2	15.4
Engineering products	47.9	36.0	47.4	28.6
Textiles, clutaing, ${ }^{\text {d }}$ der consumer goode	5.2	12.9	5.2	9.3
Unspecified	2.4	2.9	1.3	1.7
Total	100.0\%	100.0\%	100.0\%	100.0\%

Source: Adapted fron vaIT, Incernational Trade 19:6/77 and 1977/78. Table A.

It is evident that exporis of food, raw materials, ores and other minerals accounted for one-fourth of total exports, metals, chemicals, and other semimanufactures for one-sixth, engineering products just under one-half, and textiles, clothing, and other consumer goods one-twentieth of total exports in $\mathbf{1 9 : 2}$ and 1977. On the import side, the relative Importance of fuels increased more than three-fold, from 8.6 in 1972 to 29.9 per cent in 1977. Imports of iood, raw materials, ores and other minerals were about 15 per cent of total imports in 1977, as were imports of metals, chemicals, and other semimanuiactures. Engineering products accounted for somewhat less than 30 per cent of total imports in 1977, and textiles, clothing, and other consumer goods for around 10 per cent.
U.S. exports, imports, and trade balances for the major commodity subgroups are indicated for 1972 and 1977 in Table 4. Thus, in 1977, it can be seen that trade surpluses were recorded (in billions of dollars) for: food ($\$ 7.4$), raw materials ($\$ 1.1$), chemicals ($\$ 5.9$), machinery $(\$ 9.4)$, office and telecommanications equipment ($\$ 2.4$), other machinery and transportation equipment ($\$ 9.7$), and textiles ($\$ 0.2$). Trade deficits in 1977 were recorded (in billions of dollars) for: ores and other minerals ($-\$ 0.7$), fuels $(-\$ 40.0)$, nonferrous metals ($-\$ 2.8$), iron and steel ($-\$ 4.3$), other semimanufactures $(-\$ 2.9)$, road motor vehicles $(-\$ 5.9)$, household appliances $(-\$ 3.5)$, clothing $(-\$ 3.5)$, and other consimer goods ($-\$ 4.4$).

These trade-balance data are significant in drawing attention to the factors that determine the comparative advantage of the U.S. in international trade. Thus, our net exports of food and raw materials reflect to a large extent our relative abundance of land, other natural resources, and the associated efficient investments in physical capital wille our net imports of

Table 4

United States Total Merchardise Exports, Imports, and Irade Lalaaces by Comodicy Groups, 1972 and 1911 (Allifons of Dollars. fob)

Commodity liroup		Year	Exports	Imports	Balance
	Ford	1972	8.7	7.6	1.1
		1977	22.1	16.7	7.4
	2menterials	1972	2.5	2.5	-
		1977	6.0	4.9	1.1
	Ores 6 other minerals	1972	0.8	1.3	- 0.5
		1971	2.0	2.7	- 0.1
4.	Fuels	1972	1.6	4.8	- 3.2
		1977	4.2	44.2	-40.0
	Tocal prisery products	1972	13.7	16.2	-2.5
		1971	34.3	66.5	-32.2
5.	Honferrous eetale	1972	0.7	1.9	- 1.2
		1971	1.2	4.0	- 2.8
	Iroa and steel	1972	0.8	2.9	- 2.1
		1977	1.7	6.0	-4.3
7.	Chealcals	1972	4.5	2.2	2.3
		1971	11.7	5.8	5.9
8.	Ocher semmanufactures	1972	1.7	3.6	- 1.9
		1977	4.0	6.9	- 2.9
	Total seal zanufactures	1972	1.7	10.6	- 2.9
		1977	18.6	22.7	- 6.1
9.	Machinery	1972	6.1	2.6	3.7
		1977	16.9	5.5	9.6
10.	Office telecon. equipenat	1972	2.9	1.6	1.3
		1917	1.3	4.9	2.4
11.	Roed motor vehicles	1972	4.7	8.8	- 4.1
		1971	11.6	17.5	- 5.9
12.	Other each. 6 traosp. equip.	1912	8.4	4.4	4.0
		1971	18.7	9.0	9.7
13.	Housebold appliances	1972	0.8	2.7	- 1.9
		1977	1.9	5.6	- 3.5
	Total enalneerang products	1972	22.9	20.0	2.9
		1977	54.4	62.3	12.1
14.	Texciles	1972	0.8	1.5	- 0.7
		1977	2.0	1.8	0.2
15.	Clothing	1972	0.2	1.9	- 1.7
		1977	0.6	4.1	- 3.5
16.	Other consumer soods	1972	1.5	3.8	- 2.3
		1977	3.4	7.8	- 4.4
	Total consuner goode	1972	2.5	7.2	- 4.7
		1971	6.0	13.7	- 7.7
	Total mnufactures	1972	33.2	37.8	- 4.6
		1971	78.9	78.6	0.3
	Iotal trade ${ }^{\text {a }}$	1972	47.8	55.6	- 7.8
		1977	114.8	147.8	-33.0

${ }^{a}$ Including unspecified commodities.
Note: Iotals may not agree due to rounding.
Source: Adapted from Gatt, Incernational Irade 1976i77 and 1971/78,
Table A.
fuels, ores, metals, and other semimanufactures reflect our relative scarcity of the associated factors. U.S. net exports of chemicals, machinery, and equipment reflect our comparative advantage in advanced-technology industries. These industries combine especially the services of the most highly educated, technicall., trained, and experienced members of the work force and business management with the services of the physical plant and equipment that embody the most dynamically efficient technology. Finally, our net imports of automotive vehicles, household appliances, clothing, and other consumer goods are indicative of a shift in comparative advantage that has taken place over the years from the U.S. to other producing countries. Because most of these goods can now be produced with relatively standardized production methods, it has become cheaper to produce them in countries with lower wage costs.

Some further perspective on U.S. trade is given in Table 5, which breaks down the trade balances by commodity subgroups for 1972 and 1977 according to the zajor areas of the world. Thus, it can be seen that, in 19:7, the U.S. had a trade surplus in food with the European Community (EC), Japan, the Socialist Countries, OPEC, and a deficit with the Non-Oil LDC's. Canacia was a aajcr source of U.S. $1 m p o r t s$ of primary products (including fuels) and metals. The bulk of net U.S. imports of fuels came from the OPEC countries and from LDC's that were not members of OPFC. Net U.S. imports of iron and steel came from the other major industrialized countries, especially the EC and Japan. The U.S. trade surplus in chemicals was divided between the industrial countries and the LDC's. The U.S. was a net exporter of machinery, cifice and telecomunications equipment, and other machinery and transportation equipment to all the areas listed, except Japan. The U.S.
had sizable net imports of road motor vehicles from the EC and Japan. Net imports of household applidnces came mainly fron Japan and the Non-0il LDC's. The LDC's also accounted for a substantial share of U.S. net imports of clothing and other consumer goods. The data in Table 5 on the geographical breakdown of U.S. trade balances by comodity groups thus reinforce our earlier discussion of the determinants of U.S. comparative advantage vis-a-vis our trading partners.

Costs and Benefits of Trade Restriction and Liberalization

Our brief review of the commodiry composition and geographic distribution of U.S. trade has drawn attention to the sectors in the U.S. economy that compete effectively in world export markets and those that may be vulnerable to competition frum imports. If trade were assumed to be freed completely, we would presumably witness an expansion of the exfort and a contraction of che import-competing industries. This would be beneficial to the U.S. in the long run because labor, capital, and other resources would then be allocated to their most efficient uses in production and the nation's income would be permanently higher. Consumers would also benefit in terms of allocating their income among the different goods in their consumption bundle so as to maximize their satisfaction, given their preferences and the relative prices that they would encounter in the market.

If once we were in a position of free trade and import restrictions were then imposed, the process described above would work in reverse. That is, resources would be attracted from the export industries to less efficient utilization in production in the impert-competing industries, and the nation's

Tables
Indted states Irave balances by area and Cummodity Groups. 19:2 and 1977
(B1llions of Lollars, foh)

cumasily uroup	Industrial Countries						Sncialist Countries	OPEC	$\begin{aligned} & \text { Son-011 } \\ & L D C^{\prime} s \end{aligned}$
	Year	nurld	Iutal ${ }^{\text {a }}$	EuTopean Comminity	japan	Canada			
2. Food	$19: 2$	1.1	2.0	1.5	1.0	-	0.5	0.2	- 1.6
	1977	7.4	8.6	¢. 8	3.4	0.2	1.3	1.0	- 3.5
2. Kat Eateriais	19.2	-	-0.1	c. 4	0.8	- 1.4	0.1	-	0.1
	1977	1.0	0.2	1.0	1.6	- 2.6	0.1	- 0.2	0.9
3. 'res 6 otarer …nerals	1972	-0.5	-0.1	0.2	0.2	- 0.4	-	- 0.1	-0.3
	:977	-0.7	- 0.1	0.6	0.3	- 0.8	-	-0.1	-0.5
-. E.els	1972	- 3.2	-0.5	0.2	0.4	- 1.2	-	- 2.1	- 0.6
	1977	- 40.0	- 2.7	-0.7	1.1	- 3.1	-0.1	-31.4	- 5.9
	1972	- 2.6	1.4	2.4	2.3	- 3.0	0.6	-2.0	- 2.4
	1977	-3. 3	6.0	6.0	6.3	- 6.4	1.3	-30.7	-9.0
5. .uno: errous metals	1972	- 1.3	-0.9	-	-	-0.7	-	-	- 0.3
	1977	- 2.8	- 1.7	- 0.1	-	- 1.1	- 0.1	-	- 1.1
- :run ai. ${ }_{\text {deel }}$	1972	- 2.1	- 2.2	- 1.0	- 1.1	0.1	-	0.1	-
	1977	- 4.3	- 6.8	- 1.7	- 2.4	-	-	0.3	-
\checkmark - inezicals	1972	2.3	1.0	0.5	0.1	0.3	-	0.2	1.1
	19.7	5.9	2.3	0.8	0.5	0.3	-	0.7	2.9
8. し'.her semadi.ilaciurts	1972	- 1.9	- 1.6	- 0.4	- 0.2	- 0.9	-	0.1	- 0.3
	1977	- 2.9	- 2.7	- 0.6	-0.1	- 1.7	-	0.4	- 0.6
Total sezzmanutactures	1972	- 3.0	- 3.7	- 0.9	- 1.2	- 1.2	-	0.4	0.5
	$19: 7$	- 4.1	-8.9	- 1.6	- 2.0	- 2.5	-	1.4	1.2
9. Macninery	$19: 2$	3.7	1.4	-	- 0.1	1.1	0.1	0.6	1.6
	$19: 7$	9.4	2.5	0.1	-0.7	2.1	0.3	3.1	3.5

baciuing nispeci:ied inmadities.
Livie: N:tals ady not agree iue to roundiag.
Surie: Acapted :ram vilt, Internathond Trade 19:o/77 and 197i/I 3, Tatie A.
income would be lower. Consumer satisfaction would be diminished by the need to purchase a more costly bundle of goods than before.

So far, our discussion has assumed that all members of society gain or lose equally from a change in trade policy. This simplification should be removed by recognizing that, while some members of the society may gain, others will lose whenever a policy is changed. Thus, for example, if trade were assumed to become completely free, workers in the export industries would be benefited and those in the import-competing industries possibly harmed. We could say that the nation as a whole would be better off only if the gainers could potentially compensate the losers and still have the gainers be better off. And, by the same token, the losers should not be able to compensate the gainers to prevent the movement to free trade, without the losers becoming even worse off ihan they would otherwise be.

If trade were restricted, the considerations just zentioned would apply but not necessarily symetrically. That is, some groups in the society will benefit from the restrictions on trade, but in general the nation as a whole would be worse off. Winy then would restrictions ever be chosen over free trade? The answer clearly lies in the political process in the sense that the mechanisms for redistribution from gainers to losers may not in fact work effectively. Also, the grcups that benefit from existing or newly imposed trade restrictions may be better organized and more powerful politically than those who are harmed.

Essentially then, the assessment of the benefits and costs of trade liberalization or trace restriction involves the determination of: what groups gain, what groups lose, and whether the nation as a whole gains or loses from the change in trade policy. It is interesting in this connection that during the very time period when the Multilateral Trade Negotiations
have been taking place, there has been a marked increase in trade restrictions of var'ous kinds in the U.S. and the other major industrialized countries. We thus have a somewhat anomalous situation in which some sectors will be liberalized more than others as a result of the MTN, and there may be sectors that will maintain the status quo of existing restrictions or perhaps be subjected to even greater restrictions as a result of actions taken outside the context of the MTN.

It would take us too far afield to document and analyze in detail the recent decisions implemented in the U.S. and elsewhere for the purpose of restricting or slowing down the rate of increase in imports. Some of the most prominent examples of U.S. actions include restrictions imposed to limit the imports of stainless and alloy tool steel, fasteners, color television receivers, and footwear. Also, a system of trigger prices on steel imports has been introduced ostensibly to forestall dumping by foreign producers in the U.S. market. It has further been proposed to tighten the administration of the Multifiber Arrangement in order to limit imports of wearing apparel into the U.S. Numerous restrictive actions in many of these same sectors have also been taken by the European Community and other countries such as Canada. ${ }^{1}$

Certain of these restrictive measures can perhaps be justified as a temporary stopgap to permit the domestic industries to adjust to the changes In their competitive position and to ease the transition of workers in seeking alternative employment. These measures can presumably be phased out snce the adjustment has been more or less completed. The difficulty, however, is that if adjustment does not take place or is delayed, pressures may be exerted to continue the restrictions. The Multifiber Arrangement and
its prececessors going back to the early 1960's are a case in point of zestrictions that have apparently become permanent.

If restrictions are continued, they will result in costs being imposed on the society that will almost certainly be greater than the benefits that accrue to the protected industries and workers. These costs will be manifested in terms of keeping labor and capital employed in relatively less efficient uses, thus limiting their earnings opportunities in the more highly productive sectors elsewhere in the economy. Consumers will also be forced to pay relativeiy higher prices for the protected goods than they would otherwise. This is bound to increase the domestic price level, the extent of the increase depending of course upon the importance of the protected goods in the consumption bundle. The increase in prices may also have a differential effect upon consumers, depending upon their income bracket and the proportions of their expenditures on domestically produced and imporied goods. Restrictions thus deprive the nation of efficiency gains in more highly productive uses of resources and of consumption gains via lower prices. Trade liberalization offers a way to remove these costs in return for greater benefits that will accrue to producers and consumers in the society.

Plan of Analysis

We shall now proceed with our analysis. We begin in Section II with a statement and description of our model of world production and trade that will be used to analyze the economic effects of the MTN. The main features of the model will be presented in nontechnical terms. For those readers interested in the technical details of the model, a formal presentation is provided in Appendix A below. In Section III, we present our analysis of
the effects of the multilateral tariff reductions that will be carried out as a result of the MTN. We first examine the post-Kennedy Round tariff levels by country and sector for the 18 major industrialized countries covered by our model. We then discuss the tariff-cutting procedure adopted in the MTN. This is followed by a presentation and discussion of post-MTN tariff levels and an analysis of the depth of the MTN tariff cuts by country and sector. Thereafter, we present the results of our analysis of the tariff reductions based upon our model. The focus here will be the effects on employment by country and sector and the effects on prices, exchange rates, and economic welfare by country.

Section IV is devoted to an analysis of the effects of changes in nontariff barriers (NTB's). he begin with a discussion of the most important NTB's and the codes that have been negotiated in the MTN. We then present some evidence on the frequency of complaints filed by U.S. exporters with the Office of the Special Trade Representative (STR) concerning particular foreign NTB's. Because of the difficulty in obtaining quantitative information on the impact of NTB's, we confine our analysis to the effects of the liberalization of agricuitural trade and government procurement that has been accomplished in the MTN. Some possible effects of changes in other NTB's will also be discussed.

In Section V, we present the results based upon our model of the combined effects of the reductions in tariffs and the liberalization of agricultural trade and government procurement. As before, we shall focus on the effects on employment by sector and country and the effects on prices, exchange rates, and economic welfare. The results in this section will be
our overall assessment of the effects of the MTN on the basis of what we have been able to quantify. We shall also present some evidence of how sensitive our results may be to changes in particular parameters in our rodel.

In Section VI, we consider the effects of the MTN on the rest of the world. As will be noted below, we do not model the rest of world in detail. Our analysis will thus focus on the rest of world as a residual category in the model. A summary and conclusion are presented in Section VII. Finally, we present in separate appendices a formal statement of our model, the data for 1976 that we have used for purposes of calculating the effects of the MTS, and some results that are too detailed for inclusion in the text of the study but that may be of interest to particular readers.

Footnotes

1. For an analysis and documentation of recent trade restrictions

imposed in the major industrialized countries, see, for example, Blackhurst et al. (1977), Balassa (1978), Baldwin (1979), and Nowzad (1978).

Most of the estimates to be presented later ia this report are based upon a model of world trade, production, and employment that we have been developing and using at the University of Michigan over the last several years. The model incorporates supply and demand functions for each of 22 tradable and 7 nontradable industries and for each of the 18 major industrialized countries plus an aggregated sector representing the rest of the world. These supply and demand functions interact with one another on both national and world markets to determine equilibrium values of prices and quantities traded and produced. The demand functions also determine amounts of labor deranded, and thus employment, in each industry and country.

The model contains a variety of exogenous variables where effects can be analyzed. For the current purpose, the most important of these exogenous variables are those representing tariffs and several forms of quantitative restriction on trade. However, we have also used the model elsewhere to analyze exogenous changes in exchange rates, money wages, and aggregate expenditure. A number of other capabilities are also built into the model but have not yet been used.

The formal statement of the model, in equation form, is presented in Appendix A to this report. In the following sections, we first provid. a less formal discussion of how the model works, in terms of a pair of flow charts that show a sampling of the economic interactions included in the model. ie then discuss more carefully the ways that tariffs and nontariff barriers (NTB's) enter the model. Thereafter, we highlight several characteristics of the model that are important for interpreting our results. Finally, we describe how the model has been made operational for the particular purpose of analyzing the outcome of the MT.i.

The model is best thought of as composed of two parts. The first, which is depicted in Figure 1, contains separate blocks of equations for each country. The second part, sketched in Figure 2, contains a single set of equations for the world as a whole. The country blocks are used first to determine each country's supplies and demands of goods and currencies on world markets, as functions of exogenous variables and of world prices and exchange rates which are as yet unknown. These functions for each country are then combined to provide the input to the world equations of Figure 2 which actually determine world prices and exchange rates. These variables are finally plugged back into the separate country blocks to get values for other country-specific variables.

The most complicated economic interactions that are incorporated in the model are contained in the country blocks sketched in Figure 1. The figure is diviced into a number of parts, both horizontally and vertically. The horizontal divisions separate industries, with those variables which pertain to the country as a whole being listed across the top. Each country has 29 industries, but since they are identical in structure, we have included only two in the figure, with complete labels and arrows only in the first. The reader should imagine the figures extending a considerable distance beyond the bottom of the page, with additional horizontal blocks for each of the remaining 27 industries.

The vertical divisions in the figure separate exogenous variables on the right, country-specific endogenous variables in the middle, and variables to be determined in the world on the left. To conserve space we include in the right-hand column only two exogenous variables: the country's tariff in each industry and its money wage, common to all industries. Other exo-
country sysuer

COUNTRY 1
COUNTRY 2
COUNTRY 18
REST OP WORLD

Figure 2
gencus variables are included in the model and will be discussed later in the report. The left-hand column contains the country's exchange rate and the world price for each industry. The variables in the center column are to be determined within the country block as follows.

For each industry, the price of exports is simply the world price expressed in domestic currency via the exchange rate. The price of imports is obtained in the same way except that the tariff is added on. These two prices do not immediately determine the prices of domestically produced goods, however, for we assume that both producers and consumers differentiate between home-produced and traded goods of a particular industry. Thus within an industry, there are separate demand functions for home goods and imports, both of which depend on the prices of the respective goods. Likewise there are separate supply functions for home goods and exports, also depending on their respective prices. Thus, while export and import prices can be computed directly from world prices, exchange rates and tarifis, the prices of home goods in each industry must be deternined so as to equate the domestic supplies and demands of home goods.

Additional determinants of supplies and demands result from interindustry interactions of producers. An input-output technology is assumed, with each industry drawing inputs from all others. is a result, demands for both howe goods and imports of a particular industry depend upon supplies in all others. And supplies in each industry depend on prices in all others.

Demands depend, finally, on the level of aggregate final expenditure in the country. \ddot{e} e have not tried to be very sophisticated in our modeling of aggregate expenditure, since to do so would involve us in the complexities and uncertainties of macroeconomic modeling and policy forecasting. Rather, we have tried to abstract from such macroeconomic complications by
making the following relatively neutral assumption: expenditure is held constant except when tariff revenue changes, in which case the change in tariff revenue is added to expenditure. This assumption is neutral in the sense that it holds approximately constant the total revenue of producers and thus imparts neither an upward nor a downward bias to the value of world output.

Before leaving the country equations depicted in Figure 1, we shouid mention one further distinction that is not made in the figure. Of the 29 industries included in the model, only 22 are tradable. The remaining 7 are nontradable and thus have neither export supplies nor import demands. They consist exclusively of home-good markets. But they nonetheless are influenced by the prices and exchange rates that pertain to trade, as well as by tariffs in the tradable industries, both because of their input-output interactions with those industries and because they must compete with them for a share of agregate expenditure.

Turning now to the world equations of Figure 2, the picture is much simpler. We start with the export-supply and import-demand functions that were determined in the country equations as depending on world prices and exchange rates. To get world prices we simply add these supplies and demands for all countries and set the difference equal to net demand from the rest of the world. Our assumptions regarding the latter will be explained below.

This is the end of the story when we solve the model under the assumption of fixed exchange rates. An alternative solution is possible, however, incorporating flexible exchange rates. For this we use the same export and import supply and demand functions to calculate the trade balance of each country. We then require that exchange rates adjust to hold these trade balances constant.

Schematically, in Figure 2 we have arrayed the net supplies to world markets of each industry and country in a matrix. Each row corresponds to a tradable industry, each column to a country. These net supplies depend, from the country equations, on the world prices at the left and on the exchange rates across the top. To determine exchange rates (if they are assumed to be flexible), we add the net supplies vertically and equate then to the initial balances of trade across the bottom.

As must already be apparent, the rest of the world is modeled quite differently from the 18 countries that are included explicitly in the model. Lacking accessible data on production, trade, and employment for the other countries of the world, we have had to make do with a few rather ad hoc assumptions about their behavior on world markets.

For a world of flexible exchange rates, we postulated a rest-of-world excess demand function for each tradable industry, depending on the world price in that industry and a rest-of-world exchange rate. The latter was then assumed to adjust to hold the rest-of-world trade balance constant.

For a world of fixed exchange rates, two alternative assumptions were used. Under the first alternative, the same rest-of-world excess demand functions were used, but without the exchange-rate adjustment. As the trade balance therefore changes, it must be financed by capjtal flows between the rest-of-world and one or more of the 18 countries. Unfortunately the results of the model under this assumption turn out to be rather sensitive to the choice country with which the rest-of-world trade balance is to be financed. The second alternative for modeling fixed exchange rates is therefore preferred. Here we assume that rest-of-world exports respond normally to world prices, but rest-of-world imports do not. Instead, imports are subject to rigid restriction in the form of import licenses, which are adjusted in proportion to initial imports so as just to exhaust available
foreign exchange.
Using our preferred assumptions about rest-of-world behavior, the rest-of-world trade balance is held constant under both fixed and flexible exchange-rate regimes. This means that the rest-of-world's net contribution to all world markets together is held constant and the influence of the rest-of-world on the aggregate performance of the 18 countries is negligible. However, at the level of an individual industry, the presence of the rest-of-world on world markets can be quite significant. For the constancy of its aggregate trade balance does not prevent it from, say, expanding exports substantially in one industry while contracting in another.

Modeling Tariffs, NTB's and Economic Welfare

We turn now to more detailed consideration of how tariffs and various NTB's are treated in the model and how changes in economic welfare are to be measured.

Tariffs: The model includes ad valorem tariffs for each of the 18 countries and 22 tradable industries. As already indicated, the tariffs enter the model in two ways. First, they cause the price paid by an 1 mporter to exceed the price received by an exporter by the per cent of the tariff. Second, they generate tariff revenue, equal to that percentage of import value, and that revenue is assumed to be redistributed to consumers and spent on final goods. Of these two effects, the first is by far the most important, especially for individual tariff reductions. When a particular tariff is reduced, it causes the corresponding import price to fall. Demanders of the good then substitute away from home goods in that industry and towards imports. The increased demand on the world market causes the world price to rise and production and employment in the export sectors of that industry to rise as well in all countries. More noticeably,
however, in the country whose tariff was reduced, the decline in demand for the home good causes price, output and employment in the home sector to fall, and this is likely to be the most obvious effect of a single tariff reduction.

When tariffs are reduced in many countries and industries simultaneously, on the other hand, the effects on world markets become more significant. So, too, do other secondary effects that need not be detalled here. It is for this reason that a large computational model such as ours is needed in order to assess the effects of multilateral trade liberalization.

Quotas: The model also includes quantitative restrictions on imports in a number of industries and countries. While the reduction or elimination of quotas are not being dealt with systematically in the MTN, their presence in certain industries may be expected to alter the response of trade in those industries to changes in tariffs elsewhere, and so they must be taken into account.

The presence of a quota typically causes the domestic price of imports to exceed the world price plus tariff. Indeed, if the quota were to apply to all imports of an industry, the import price would have to adjust as necessary to keep imports from changing, and would be completely independent of the world price and tariff. In practice, our rather aggregated industries never have absolutely all of their imports subject to quota. Instead we use the fraction of an industry's trade that is subject to quantitative restrictions to construct its import price as a weighted average of the world price plus tariff on the one hand and of the price that would have held imports constant on the other. The result is to make trade in quota-protecte! industries less responsive to changes in tariffs and other variables than would have been the case if quotas had not been considered.

In addition to incorporating existing quotas in the manner just indicated, the model also includes a facility for analyzing the effects of changing the quantity of imports let in under a quota. A variable representing the quota enters into the determination of the import price in such a way that when the quota goes up, the price goes down and imports expand accordingly.

Government Procurement: Other NTB's can often be analyzed as equivalent either to a tariff or to a quota, assuming that data on their tariffor quota-equivalents can be obtained. Regulations concerning government procurement (GP), however, have no suca obvious equivalence. Yet the operation of GP is sufficiently straightforward that we have chosen to model it explicitly as follows. Some amount of final demand in each industry is assumed to be subject to a requirement that it be spent exclusively on home-produced goods. The remaining demand is assumed to be allocated competitively between imports and home produced goods. Thus the demand functions for home goods and imports are augmented and diminished, respectively, by a fraction of the demand that is subject to such regulation. This fraction is the same fraction that would have been spent on imports had it not been so regulated.

The basic effect of releasing a certain amount of demand from the procurement regulation is therefore quite simple. As a first approximation, demand for imports rises and demand for home goods falls by the same fraction of the newly unregulated expenditure as that currently being spent on imports by the rest of the population. This is only a first approximation, however, since the relative price of home and imported goods will certainly change as a result, and other prices as well as the exchange rate may change too. Thus, we need the complete model te determine what the outcome will finally be.

Economic Welfare: Our model was not intended originally to estimate effects on econonic welfare, but, for the purpose of this report, we have added a facility to compute the change in national welfare arising from the reduction in tariffs and NTB's. Theoretical problems of dealing with both tariffs and NTB's have led us to construct two different welfare measures. These are discussed in detail in Appendix B. Briefly, the first measure is valid if tariff changes are the only cause of changes in trade. It relies on the partial equilibrium analysis of a tariff change and uses the results of the model to calculate economic welfare as the sum of the changes in consumer and producer surplus and tariff revenues.

The second method posits a shift in the supply or demand function for exports or imports and is based on a measure of the implicit changes in consumer and producer surplus. Its implementation relies on crude estimates of certain unobservable price changes, based on supply and demand elasticities and changes in trade. This second method is used explicitly to analyze changes in government procurement, and it is less suitable therefore to deal with the welfare effects of tariff changes when supply or demand functions are given rather than being shifted.

Special Characteristics and Caveats

Several features of the model should be emphasized, since they bear on the proper interpretation of the results obtained.

Comparative Statics vs Dynamics: First, the model is a comparativestatic equilibrium model and does not contain any explicit dynamic content. This means that we have specrfied equilibrium conditions in a number of markets and that we perturb the system by introducing changes in tariffs or other exogenous shocks. The model is then used to calculate how various
variables change from one equilibriun to another in response to the shocks. Since we do not model the dynanic process of getting from one equilibrium to another, we cannot state explicitly the time required for these changes to take place. We can only state that these changes are what would be observed after enough time has elapsed for the assumed equilibria to be restored. This interpretation in turn requires an understanding of which markets are, and which markets are not, assumed to clear in the model. This is the subject of the next two points.

Labor Market Disequilibrium: thile we do assume equilibriun in all goods markets (and in the market for foreign exchange when exchange rates are assumed flexible), we do not assume equilibrium in the markets for the primary factors of production, labor and capital. Instead, in the labor market, we take the money wage as given in each country and assume the presence of sufficient unemployed labor to meet any increases in labor demand that may be forthcoming. Thus, employment in our model is entirely demand determined. This assumption accords well with the observation that wages are considerably slower to respond to changing market conditions than are prices, and of course this is the same assumption that has long been common in Keynesian macroeconomic analysis. Its use here is further motivated by the need to say something about unemployment, which would be impossible if the labor market were assumed to clear. It does mean, however, that the employment changes we calculate should be regarded as temporary, since in the longer run wages will adjust.

Fixed Capital Stocks: The other primary factor, capital, is also assumed to be in disequilibrium. The reason, however, is not that the price of capital is fixed, but rather that capital itself, as embodied in plant and equipment, cannot readily move from industry to industry. Indeed we take this assumption one step further by assuming that capital cannot move
between the export and home-goods sectors of a given industry. While this assumption is more stringent than might be desired, it should not make too much difference so long as, in our results, we aggregate the home and export production sectors together. But it should be understood that, in the longer run, both the expansions and contractions of various industries in a given country are likely to become nore pronounced as capital moves from industries with low returns to ones with high ic:urns.

Macroeconomic Content: Finally, we should reiterate that our model does not capture in any but the crudest way the process of macroeconomic income determination. The model was designed to permit comparisons among industries at the microeconomic level, rather than to predict accurately the effects on aggregate income, prices, or employment. The latter are very sensitive to how aggregate monetary and fiscal policies are conducted and there exist numerous macro models which capture this process much more accurately than we could here.

Impieme::tation of the Model

The current version of the model covers the 18 industrialized countries, plus an aggregated sector for the rest of the world as described above. The 18 countries are listed below together with the abbreviations that will be used to refer to them in subsequent sections. The choice of countries was dictated by the availability of detailed trade and tariff information at the line-item level.

Countries

ALA - Australia	IT - Italy
ATA - Austria	JPN - Japan
BLX - Belgidm-Luxembourg	NL - Netherlands
CND - Canada	NZ - New Zealand
DEN - Denmark	NOR - Norway
FIN - Finland	SWD - Sweden
FR - France	SWZ - Switzerland
GFR - West Germany	UK - United Kingcom
IRE - Ireland	US - United States

World industry was categorized into 29 classifications, of which 22 are tradable. They are identified by numbers adapted from the International Standard Industrial Classification (ISIC) and are described below:

Nontradables

ISIC Group

2

4
5
6
7
8
9

Description

Mining and quarrying Electricity, gas, and water
Construction
Wholesale \& retail trade, restaurants \& hotels
Transport, storage \& communication Finance, insurance, real estate, etc. Community, social \& personal services

Tradables

ISIC Group

1
310
321
322
323
324
331

Description

Agriculture, hunting, forestry \& fishing
Food, beverages \& tobacco
Textiles
Wearing apparel, exc. footwear
Leather \& leather \& fur products
Footwear
Wood products, exc. furniture

Furniture \& fixtures, exc. metal
Paper \& paper products
Printing \& publishing
Industrial chemicals (351); Other chemical products (352)
Petroleum refineries (353); Misc. products of petroleum 8 coal (354)
Rubber products
Pottery, china \& earthenware (361); Other nonmetallic mineral products (369)

Glass \& glass products
Iron \& steel basic industries
Non-ferrous metal basic industries
Metal products, exc. machinery, etc.
Xachinery, exc. electrical
Electrical machinery, apparatus, etc.
Transport equipment
Plastic products, n.e.c. (356) Professional, photographic goods, etc. (385); Other manufacturing industries (390)

In order to specify the supply and demand functious of the model, we needed data on trade, tariffs, production, and empleyment for each of these industries and countries. The sources for these data are listed in Appendix C. In addition, we needed estimates of import-demand elasticities and cf elasticities of substitution between capital and labor in each industry. These were based on published estimates that have been obtained by other researchers.

Finally, to implement the model we needed input-output tables for each of the 18 countries. Limitations of time and of funds have so far prevented us from collecting such tables for all countries, and we therefore have used only the 1967 input-output table for the U.S. economy and have applied it to describe technology in all 18 countries. This undoubtedly introduces some errors into our analysis, che size and importance of which cannot be assessed until the tables for other countries are available for comparison. However, we see no reason to expect that these errors would be systematic or that they would bias our conclusions in any significant way. And of
course, our results for the United States should be quite accurate in any case.

Before considering the effects of the MTN tariff reductions, it may be useful first to present some summary information pertaining to the U.S. and the other major industrialized countries for 1976 , which is the reference year for all of our calculations concerning the MTN. We shall concentrate particularly on the tariff levels by sector as they existed at the end of the Kennedy Round (1972) and prior to the reductions negotiated in the MTN. We shall then discuss briefly the Swiss formula, which was agreed upon by the major negotiating countries as the basis for the across-the-board tariff reductions to be carried out in the MTN. We shall subsequently focus especially on the depth of cuts that have actually been negotiated in the MTN by sector and country. This examination will include comparisons of the actual cuts with those that would have been made if the Swiss formula had been applied uniformly across sectors. We will also consider what the new tariff levels will be as a result of the MTN. Our final and most important task will be to present the results of our analysis of the economic effects of the MTN tariff reductions based upon our model.

The Pattern of Employment, Trade, and Protection in 1976

To give some idea of how the U.S. and the other industrialized countries interact with each other in the 22 tradable industries, we present a summary of some basic data in Table 6. For each tradable industry, the first column gives 1976 total U.S. employment in thousinds of man years. U.S. net exports for 1976 are shown in the second column. In the next two

Table 6
The Pattera of U.S. Employment, Trade, and Protection in 1976

ISIC Tradable Industry	Employment (000)	$\begin{aligned} & \text { Net Exports } \\ & \text { (mill. \$) } \end{aligned}$	Average 0 Weigh U.S. Imports 2	S. Tariff ed by World Imports 2	```Index of U.S. Non-Tariff Restrictions 2```
1	3,297.1	9,714.1	2.2	4.4	1.4
310	1,743.9	-25.7	6.3	6.4	45.4
321	1,174.6	2,086.3	14.4	14.8	41.3
322	1,163.6	-2,811.1	27.8	26.9	66.1
323	89.9	187.1	5.6	4.1	0
324	174.9	-1,716.2	8.3	8.8	51.2
331	531.4	233.9	3.6	2.5	0
332	402.0	276.3	8.1	7.4	0
341	665.1	-702.1	0.5	1.7	0
342	1,070.9	470.4	1.1	0.9	60.6
35A	1,085.6	8,043.3	3.8	7.5	0
35B	176.3	-31,275.8	1.4	1.2	56.2
355	261.4	-733.7	3.6	4.5	0
36A	438.8	-134.0	9.1	7.1	0
362	177.4	261.7	10.7	11.8	0
371	780.5	-387.7	4.7	5.6	10.0
372	305.5	-3,506.4	1.2	1.6	0
381	1,530.1	845.9	7.5	8.3	0
382	2,271.4	15,137.2	5.0	5.4	0
383	1,834.5	1,204.5	6.6	6.9	8.3
384	1,791.3	7,499.2	3.3	3.6	1.8
38A	1,287.1	-8,957.3	7.8	8.2	0.5
All	22,253.2	-4,290.1	6.5	6.7	21.4

Note: The employment data refer only to tradable industries and are from United Nations (1978) and OECD (1978). Trade data are from UN trade tapes; both imports and exports have been valued on a cif basis. Tariffs are post-Kennedy Round, ad-valorem tariffs based upon data supplied by STR. The tariffs have been weighted, respectively, by total (dutiable + nondutiable) U.S. imports and by total (dutiable + nondutiable) imports of the 18 industrialized countries ("world" imports). The overall weighted average tariffs in the last line of the table are for industrial products only (i.e., ISIC 1,310, and 35B are excluded). Details ou the index of quantitative restrictions are given in Appendix C.
columns, we report nominal post-Kennedy Round tariff averages by industry for the U.S., using as weights the value of total (dutiable + nondutiable) 1976 imports for the U.S. and for all 18 countries combined. In these cases, the bottom entries in the table are the import-weighted averages for industrial products only, that is, exclusive of agricultural products (ISIC 1), food and kindred products (ISIC 310), and products of petroleum and coal (ISIC 35B). Finally, in the last column, we report an index that we have constructed to indicate the importance of U.S. nontariff restrictions. This index is intended to represent the percentage of trade in each industry that is subject to some type of nontariff restriction. The bottom entry is the weighted-average index for all sectors.

Among the U.S. industries, post-Kennedy Round tariff rates were the highest for textiles and wearing apparel (ISIC 321 and 322), footwear (ISIC 324), nonmetallic mineral products (ISIC 36A and 362), fabricated metal products (ISIC 38A), and miscellaneous manufactures (ISIC 38A). The fraction of trade subject to nontariff restrictions is seen to be substantial in food, beverages, and tobacco (ISIC 310), textiles and wearing apparel (ISIC 321 and 322), footwear (ISIC 324), iron and steel (ISIC 371), and electrical wachinery (ISIC 383). In the industries that are covered by nontariff restrictions, it should be noted that the tariffs involved do not affect prices, but serve only as a tax on the profits of those who control the limited allocation of imports permitted by the nontariff restrictions.

Comparing U.S. tariffs by sector based on the two systems of weighting in Table 6, except for chemicals (ISIC 35A), there do not appear to be substantial differences in the rates when U.S. imports of industrial products
rather than world imports are used for weighting.
Some further perspective on how U.S. tariffs compare on average to the other industrialized countries is given in Table 7. Based on own-countryimport weights, the countries with the highest average tariffs were Australia, Austria, Finland, and New Zealand. The average tariffs for members of the European Commanty ranged fron 7.3 per cent for Italy to 9.4 per cent for Irelanc'. Japan's average tariff was 3.9 per cent. The average tariff for the U.S. of 6.5 per cent was thus somewhat lower as compared to the EC combined and somewhat higher than for Japan. Comparisons could also be made for the index of nontariff restrictions, which are indicated by sector and country in Appendix Table C. 7 below. But such comparisons would be indicative only of the coverage of trade rather than the degree to which trade may be restricted by the various measures.

Tariff Offers in the MTN

The preceding discussion was designed to give some indication of the levels of tariffs as they existed at the end of the Kennedy Round in 1972 and prior to the reductions that have been negotiated in the MTX. Until the Kennedy Round, tariff reductions were negotiated mainly on an 1tem-by-item basis. One of the accomplishments of the Kennedy Round was to replace this rather cumbersome process with across-the-board reductions based upon some formula agreed to by the major negotiating countries, but with exceptions allowed for industries that were supposed to
table 7
aveauje pjot-kexinedy round tabiff rates cif indostrial pboducts in the industeializpd ccostfies

ccustay	$\begin{aligned} & \text { OUN-COONREY } \\ & \text { IAPORTS } \end{aligned}$	$\begin{aligned} & 76 \\ & \text { IMPRLD } \end{aligned}$
Austadila	17.08	15.38
AUstasa	15.4	13.3
CAMADa	7.3	8.9
Eurgreay Conauxity		
BRLGIUA-LOXEMdOORG	8.2	8.2
devalak	9.0	8.2
prades	8.3	8.2
Gexsay	8.7	8.2
IERLAND	9.4	8.2
italy	7.3	8.2
\#ETHEabands	9.2	8.2
ULIEEJ KIVGDOA	7.3	8.2
FIMLAMD	9.6	8.5
JAPAE	3.9	6.7
Mev zealand	13.9	21.9
HOEEAY	6.9	7.3
SuEDEY	6.4	5.7
SUITZEBLAMD	3.9	3.8
UnITED States	6.5	6.7
ALl counteies	7.8	9.1
yOTE: THE URIGHTS REPER TO TOTAL (DUTIABLE + ECM-DOTIABLE) IAPORTS: ISIC 1, 310 and 35B ARE EXCLODED. PCR ACCITIONAL RESOLTS, SEE [ABLES 6 AIC 8.		

be particularly vulnerable to competition from imports or that were covered by nontariff measures.

A great deal of attention was devoted in the Kennedy Round to the issue of tariff disparities between the U.S. and European Community. These disparities existed because of some relatively very high tariffs in the U.S. on particular items in comparison to the European Commanity where tariffs tended to be more uniform and thus exhibited less dispersion. It was in this light that the EC promoted the principle of tariff harmonization as the basis for reducing tariffs in the Rennedy Round. Harmonization would have resulted in the U.S. reducing its highest tariffs the most, thereby bringing the tariff schedules of the two regions closer together. The issue of disparities was never formally settled in the Kennedy Round, perhaps because the EC could not demonstrate readily that disparities really mattered very much in terms of their trade impact in the various sectors involved. In any event, pressures for tariff harmonization emerged once again in the MTN. This time, rather than engaging in a lengthy dispute as in the Kenneay Round, agreement was reached on a harmonization formula proposed by the Swiss.

According to the Swiss formula, tariffs on industrial products were to be cut as follows: $z=(a x) /(a+x)$, where z is the new tariff rate and x is the base or GATT (post-Kennedy Round) rate, both in percentage terms, and a is a parameter that was set at 14 in the original proposal. To illustrate the Swiss formula, suppose that we had base rates of 10 and 30 per cent and a was equal to 14 . The new rates would then be:

$$
\begin{aligned}
z_{1}= & \left(\frac{14 \times 10}{(14+10)}=5.5 \%\right. \\
z_{2} & =\frac{(14 \times 30)}{(14+30)}=11.8 \%
\end{aligned}
$$

The 10 per cent rate would thus be reduced by 45 per cent to a new level of 5.5 per cent. The 30 per cent rate would be reduced by 61 per cent to a new level of 11.8 per cent. The higher rate would thus be cut more than the lower rate, and there would now be much less disparity between the rates than before. While most, but not all, of the major countries agreed to use the Swiss formula, they reserved the right to set the value of the parameter a in the formula and to make less-than or greater-than formula cuts in particular tariff rates.

We present in Tables 8 and 9 the base and MTN offer rates on industrial products by sector for the 18 countries. These rates are weighted by total (dutiable + nondutiable) 1976 own-country imports. The corresponding rates weighted by 1976 world (18-country) imports are recorded in Appendix Tables C. 5 and C.6. The differences between the base and MTN offer rates are shown in terms of the percentage depths of cut in Table 10. For greater ease of reference, we present in Table 11 the overall total-import weighted averages by country in terms of the base (post-Kennedy Round) rate, MTN offer rate, and percentage depth of cut.

It is evident from these tables that the U.S. has offered in the MTN to reduce its industrial tariffs overall by approximately one-third, to a level of 5.8 per cent. The European Community reductions are approximately 27 per cent, with new levels ranging from 5.2 per cent for the $U . K$. to 6.9 per cent for Ireland. As noted in the tables, Australia, Canada, and

TABLE

POST-KENNEDY ROUND BASE RATE TARIFFS ON INDUSTRIAL PRODUCTS BY ISIC SECTOR IN THE MAJOR INDUSTRIALIZED COUNTRIES
(PER Cent: weighted by own-Country imports, excluding petroleum)

	4LA ${ }^{\text {+ }}$	ATA	BLX	CND 4	DEN	FIN	FR	GF R	I RE	$1 T$	JPN +	NL	N2	NOR	SWD	SW2	UR	US	ALL
321	21.5	18.7	9.5	18.9	12.1	24.1	9.8	10.3	10.7	7.5	3.3	11.8	14.2	16.2	10.9	8.2	9.2	14.4	10.7
322	61.8	36.3	16.7	25.4	16.4	37.2	16.7	16.8	16.4	16.6	13.8	16.8	58.7	22.8	14.4	15.5	16.9	27.8	20.7
323	25.7	9.1	4.1	8.2	3.6	12.6	3.3	5.1	5.4	1.7	3.0	5.2	15.3	6.6	4.8	2.8	2.8	5.6	4.5
324	33.8	24.1	11.4	24.5	11.5	17.5	11.5	11.7	11.9	10.8	16.4	11.2	44.1	24.6	13.8	12.4	12.5	8.8	12.4
331	13.6	4.8	3.2	5.8	4.4	0.5	3.3	3.9	3.2	1.0	0.3	3.6	11.7	2.0	0.9	5.0	4.0	3.6	2.7
332	40.0	23.0	8.5	19.4	8.4	$8.7 *$	8.5	8.5	8.5	8.5	7.8	8.5	40.3	7.6	5.4	13.2	8.5	8.1 *	10.3
341	7.1	15.9	9.3	11.8	10.8	8.0	7.6	7.1	10.9	3.7	2.1	8.4	20.9	2.9	3.0	6.6	6.6	0.5	5.8
342	1.8	2.4	2.4	5.7	4.4	1.8	3.4	3.3	2.4	2.7	0.2	3.5	1.1	4.3	0.2	0.9	3.3	1.1	2.9
35A	5.8	8.1	11.6	7.9	11.9	3.1	10.9	11.6	10.7	11.8	6.2	11.9	10.0	8.1	6.3	1.1	11.4	3.8	9.4
355	13.8	14.6	6.2	12.2	6.7	13.9	5.2	5.7	5.6	4.0	1.5	6.1	9.5	7.3	6.5	2.0	4.0	3.6	5.8
364	11.6	8.9	5.2	9.5	6.7	38	7.0	5.4	6.0	3.3	0.6	4.4	13.8	2.8	3.1	3.5	3.2	9.1	5.8
362	15.2	17.5	9.9	11.3	9.7	25.4	9.8	10.2	9.5	9.6	7.5	9.3	15.4	10.5	9.3	4.5	10.4	10.7	10.5
371	10.6	6.2	6.1	6.7	7.2	5.7	C. 6	6.3	7.5	4.7	3.3	7.1	6.0	2.2	4.7	2.1	6.3	4.7	5.8
372	5.3	4.5	1.9	2.0	8.1	1.2	3.1	2.3	8.0	2.2	1.1	4.3	9.3	1.1	0.9	4.3	2.0	1.2	2.0
381	24.1	19.3	7.7	14.1	7.9	9.6	7.8	8.0	7.7	8.0	6.9	7.8	29.7	6.3	5.3	3.8	8.0	7.5	9.0
382	14.2	10.8	6.4	6.1	6.4	8.7	6.4	6.6	6.1	6.5	9.1	6.4	28.1	8.8	4.9	1.5	6.4	5.0	6.7
383	21.6	18.7	9.6	12.9	9.3	11.0	9.8	10.2	9.5	9.9	7.4	10.0	21.0	8.6	7.0	2.0	10.0	6.6	9.6
384	22.1	24.5	11.1	2.4	8.5	6.0 *	10.3	9.9	12.0	10.7	6.0	10.9	27.6	3.5	8.2	6.7	9.3	3.3	7.7
384	13.0	13.7	5.2	8.8	10.0	18.1	9.6	9.1	11.2	9.4	6.0	8.7	20.5	8.9	6.1	1.5	4.9	7.8	7.8
ALL	17.0	15.4	8.2	7.3	9.0	9.6	8.3	8.7	9.4	7.3	3.9	9.2	18.9	6.9	6.4	3.9	7.3	6.5	7.8

*ESTIMATED FROM INCOMPLETE DATA.
+PREVAILING RATES, WHICH INCLUDE UNILATERAL REDUKTIONS IN POST-KENIEDY ROUND TARIFF RATES.
SOURCE: BASED ON DATA SUPPLIED BY STR.

IV THE MAJOR INOUSTRIALIZED COUNTRIES
PER（ENT：AEIGHTED ロY OWN－EOUNTRY IMPURTS，EXCLUDING PETKOLEUYI

	4：3＊	4TA	BLX	CNL＋	つセV	FIN	FF	GF R	IRE	IT	JPN＋	vL	N2	NOR	Sid	Sriz	UK	US	ALL
321	21.2	$: 5.9$	7.2	16.7	8.7	22.5	7.3	7.4	7.8	5.6	3.3	8.5	12.3	13.3	10.3	6.6	6.7	9.2	8.5
$3: 2$	51.8	？6． 2	13.4	24.2	13.2	35.5	13.2	13.4	13.2	：3．2	13.8	13.5	58.5	21.7	14.2	12.4	13.3	22.7	17.5
こころ	20.3	7.7	2.5	6.3	1.8	9.3	1.6	3.2	1.8	0.7	3.0	3.0	15.3	5.8	4.0	2.1	1.2	4.2	3.0
$?-4$	？？．8	23.4	11.4	21.9	11.5	17.4	11.3	11.7	11.9	10.4	15.7	11.2	40.7	21.7	13.7	9.0	12.5	8.8	12.1
± 31	12.5	3.7	2.4	3.2	3.4	0.4	2.4	2.9	2.5	0.8	0.3	2.8	11.4	1.6	0.7	3.2	3.1	1.7	1.9
332	$3: .2$	22.1	5.6	14.3	5.5	5．5＊	5.6	5.6	5.7	5.6	5.1	5.6	38.3	5.1	4.0	9.2	5.6	4．1＊	7.3
－il	$\cdots 1$	12.3	6.9	6.7	？． 9	4.5	5.5	5.2	8.0	2.6	2.1	6．？	20.5	1．${ }^{\text {4．}}$	2.4	4.3	4.9	0.2	4.2
342	2． 8	1.5	1.5	1.0	2.8	1.1	2.2	2.1	1.5	1.8	0.1	2.2	1.1	4.3	0.2	0.7	2.1	0.7	1.5
354	5.4	4.7	8.0	7.5	8.5	1.8	7.6	8.0	7.6	8.1	4.8	8.1	8.1	6.2	4.8	0.9	7.9	2.4	6.7
： 55	：1． 2	9.9	4.2	6.7	4.4	13.5	3.5	3.8	3.7	2.7	1.1	4.1	9.5	6.6	6.1	1.7	2.7	2.5	4.1
364	11.5	5.9	3.7	6.4	5.0	2.9	4.7	3.6	4.5	2.8	0.5	3.3	12.7	2.4	2.8	2.5	2.4	5.3	4.0
j62	15.2	12.9	8.0	$\bigcirc .2$	7.5	22.3	7.4	7.9	7.3	7.6	5.1	7.5	13.5	8.0	7.1	3.1	7.9	6.2	7.9
371	1.8	5.8	4.6	5.4	5.5	4.2	4.9	4.7	5.9	3.5	2.8	5.6	5.2	1.7	3.7	1.7	4.7	3.6	4.4
j72	4.2	3.3	1.6	2.0	6.6	0.8	2.6	1.9	6.5	1.8	1.1	3.6	4.1	0.9	0.7	2.4	1.7	0.7	1.6
¢8：	23.7	10.4	5.4	8.5	5.5	7.7	5.4	5.5	5.4	5.5	5.2	5.4	26.5	4.4	4.0	2.8	5.6	4.8	6.3
382	13．9	6.4	4.3	4.5	4.4	6.1	4.4	4.5	4.3	4.5	4.4	4.3	22.1	5.2	3.5	1.2	4.2	3.3	4.7
583	21.6	14.7	7.4	5.8	7.1	$6.0 *$	7.7	8.3	7.2	8.0	4.3	7.8	19.6	6.9	4.5	1.6	8.1	4.4	7.1
384	2：． 2	22.1	7.9	1.6	7.2	$3.8 *$	7.9	7.7	10.2	8.8	1.5	9.0	26.8	2.2	5.1	6.1	7.2	2.5	6.0
384	：2．8	8.7	3.0	5.4	6.1	12.6	5.8	5.6	6.5	5.8	4.6	5.2	18.2	7.4	4.6	1.1	3.0	4.2	4.7
4LL	：6．5	12.1	5.9	5.2	6.6	7.1	6.0	6.3	6.9	5.4	2.9	6.8	16.7	5.2	5.0	3.1	5.2	4.3	5.8

－ESTIMATED FRTM INCOMPLETE DATA

SN2CE：BASED ON UAZA SUPPLIED BY STR．

AEIGHTED BY MV-_D:لKY IMP゙JRTS. EXLUDI`G PLTKOLEIMI

	41.94	i. 4	P: X		OEV	F:	+ H	GFR	IRt.	17	Jp\% +	' L	$\because 7$	AOR	Sid	Sw?	''K	US	ALL.
321	1.4	15.6	.4.2	11.6	.8.1	6.6	<5.5	28.2	27.1	25.3	0.0	28.0	13.4	17.9	5.5	19.5	27.2	36.1	21.2
322	$\therefore .0$	C. 3	19.8	4.7	19.5	4.6	21.0	20.2	19.5	20.5	0.0	19.6	0.3	4.8	1.4	20.0	21.3	18.3	15.4
$3: 3$	$2 \therefore 0$: 5.4	39.0	27.2	50.0	26.2	51.5	37.3	65.7	58.8	0.0	42.3	0.0	12.1	16.7	25.0	57.1	25.0	32.8
$3: 4$	$\therefore 1$	2.9	0.0	10.6	0.0	0.6	1.7	0.0	0.0	3.7	4.3	0.0	7.7	11.8	0.7	27.4	0.0	0.0	2.7
32:	9.1	22.9	-5.0	44.8	22.7	20.0	2?.3	25.6	21.9	29.0	0.0	22.2	2.6	20.0	22.2	36.0	22.5	52.8	29.4
$3: 2$	22.0	3.9	34.1	26. 3	34.5	$36.8 *$	34.1	34.1	32.9	34.1	34.6	34.1	5.0	32.9	25.9	30.3	34.1	49.4*	28.9
34:	3.0	22.6	$=5.8$	4?.2	26.9	43.8	27.6	? 6.8	26.6	29.7	0.0	26.2	1.9	34.5	20.0	34.8	25.8	60.0	27.2
¢ 42	$\therefore 0$	37.5	27.5	82.5	36.4	38.9	35.3	36.4	37.5	33.3	50.0	37.1	0.0	0.0	0.0	22.2	36.4	36.4	48.1
j5:	5.9	42.0	3!.0	5.1	28.6	41.9	$30 . ?$	31.0	29.0	31.4	22.6	31.9	19.0	23.5	23.8	18.2	30.7	36.8	28.9
355	:8.9	32.2	32.3	45.1	34.3	2.9	32.7	33.3	33.9	32.5	26.7	32.8	0.0	9.6	6.2	15.0	32.5	30.6	30.2
364	2.9	33.7	28.8	32.6	25.4	23.7	32.9	33.3	25.0	15.2	16.7	25.0	8.0	14.3	9.7	28.6	25.0	41.8	30.2
362	$\therefore .0$	26.3	19.2	36.3	22.7	12.2	24.5	22.5	23.2	20.8	32.0	19.4	12.3	23.8	23.7	31.1	24.0	42.1	24.1
371	j. 0	5.5	24.6	19.4	23.6	26.3	25.8	25.4	21.3	25.5	15.2	21.1	13.3	22.7	21.3	19.0	25.4	23.4	23.3
372	20.8	26.7	15.8	0.0	19.5	33.3	16.1	17.4	18.8	18.2	0.0	16.3	55.9	18.2	22.2	44.2	15.0	41.7	18.6
381	1.7	46.1	29.9	39.7	30.4	19.8	30.8	31.3	29.9	31.3	24.6	30.8	10.8	30.2	24.5	26.3	30.0	36.0	30.6
362	2.1	40.7	32.8	25.2	31.3	29.9	31.3	31.8	29.5	30.8	51.6	32.8	21.4	40.9	28.6	20.0	34.4	34.0	30.6
383	0. 0	21.4	22.9	55.0	23.7	45.5*	21.4	18.6	24.2	19.2	41.9	22.0	6.7	19.8	35.7	20.0	19.0	33.3	25.9
384	4.1	9.8	28.8	33.3	15.3	36.7*	23.3	22.2	15.0	17.8	75.0	17.4	2.9	37.1	37.8	9.0	22.6	24.2	21.4
384	1.5	36.5	$+2.3$	38.6	39.0	30.4	39.6	38.5	42.0	38.3	23.3	40.2	11.2	16.9	24.6	26.7	38.8	46.2	39.4
4LL	2.8	21.5	28.3	29.1	25.8	25.2	27.8	27.1	26.7	27.0	25.3	26.7	11.8	24.8	23.0	21.2	27.7	34.1	26.4

- ESTIMATED FRUM INOMPLETE DATA.
+'JSING PREVAILING RATES, WHICH IVC LUDE UNILATERAL REDUCTIONS IN POST-KENNEDY RDUND TARIFE KATES.
SOUREE: BASED ON DATA SUPPLIED BY STR.

TABLE 11

IMDOSTEIALIED COURPIIS IV TAE ET

counter	$\begin{gathered} \text { AYERAGE } \\ \text { POSY-REMAEDI } \\ \text { BOOMD DASE } \\ \text { BAFE } \end{gathered}$	$\begin{aligned} & \text { url cpres } \\ & \text { DASt } \end{aligned}$	$\begin{aligned} & \text { AVEBAGE } \\ & \text { PERCEMTAGE } \\ & \text { COT } \end{aligned}$
AUSthalia*	17.08	16. 58	288
austera	15.4	12.1	21.5
carada*	7.3	5.2	29.1
EUBUPEAL EJEAOEITE			
HELGIOK-LOXEABOOEG	8.2	5.9	28.3
demazak	9.0	6.6	25. 6
Taumce	8.3	6.0	27.8
geinamy	8.7	6.3	27.1
crelamd	9.4	6.5	26.7
italy	7.3	5.4	27.0
metarglayds	9.2	6.1	26.7
UWITED EIfgdoa	7.3	5.2	27.7
pishay	9.6	7.1	25.2
japaye	3.9	2.9	25.3
Mev zealamd	18.9	16.7	11.0
mosuat	6.9	5.2	28.8
Suzden	6.4	5.0	23.0
Sultzerlayd	3.9	3.1	21.2
ghitej states	6.5	4.3	30.1
All counteies	7.8	5.8	26. 4

saSEJ UU PBETAIEIEG RATES, UGICA IMCLOCE DEILATEBAL BEDOCTIOMS
IM THE PUST-IEMAEDY ROUND TARIPPS.
SUURCE: BASED OE DATA SUPPLIED BI STE.

Japan had previously reduced their post-Kennedy Round tariffs unilaterally. The depth of cut has thus been calculated on the prevailing rates for these countries. Australia evidently offered only a small further reduction, whereas the depths of cut for Canada and Japan were about 29 and 25 per cent, respectively. The average depth of cut for all 18 countries included in Table 11 was about 26 per cent.

We have already mentioned that the MTN offers were reportedly based upon some version of the Swiss formula, subject to exceptions at the discretion of each country. In order to investigate this further, we asked STR for information on each country's choice of formula. This information is sumarized in Table 12. It can be seen that the major differences among countries were in the choice of the value of the parameter a in the formula and in the maximum extent of cuts. Australia and New Zealand decided not to use the formula.

Given the principle of across-the-board cuts based on the Swiss formula, it is of interest to determine the extent to which the major countries adhered to the formula in arriving at their tariff offers. Presumably, if particular offers were less than the formula cuts, this would be indicative of industries that were judged to be especially vulnerable to competition from imports. With this in mind, we proceeded to calculate the percentage tariff reductions that would have been made if each country had applied its version of the Swiss formula noted in Table 12. The results are given in Table 13. By comparing these reductions with the actual reductions in Table 10, we can determine whether the actual reductions were less than, equal to, or greater than formula. The results are summarized for the overall depths of cut in Table 14.

Table 12

Versions of the Swiss Formula Used in the MTN by the Major Negotiating Countries

Country	Version of Formula
Australia	Not a formula country
dustria	$z=(16 x) /(16+x)$, with a 40% maximum depth of cut
Canada	$z=x\left[1-0.7\left(\frac{x}{x+12}\right)\right]$
European Community	$z=(16 x) /(16+x)$
Finland	$z=(16 x) /(16+x)$
Japan	$z=(14 x) /(14+x)$
. .ew Zealand	Not a formula country
Norway	$z=(16 x) /(16+x)$
Sweden	$z=(16 x) /(16+x)$
Switzerland	$z=(14 x) /(14+x)$
United States	$z=(14 x) /(14+x)$, with maximum of 60% cut to be applied for rates over 21%

Source: Based upon information provided by STR.

	11．4＊	1.8	$a: x$	： 30	ことN	$F: V$	FR	GF R	I RE	1 T	JFN＋	$\because L$	N？	NJR	SND	SN2	UK	U9	ALL
$2-1$	1.4	E8． 3	4．2	44.4	45.5	63.0	45.9	\＄5．6	45.8	42.7	42.4	45.8	13.4	58．0	43.1	48.8	45.7	39.6	43.0
322	0.0	59.8	$5 . .5$	47.6	5：．2	71． 2	51.5	51.2	50.6	51.2	50.0	51.2	0.3	59.2	47.9	54.2	51.5	39.9	45.8
323	21.0	44.0	34.1	36.6	33． 1	50.8	30.3	33.3	33.3	29.4	46.7	34.6	0.0	37.9	31.3	25.0	32.1	33.9	34.4
3.4	0.0	58.9	44.7	46.9	45.2	53.1	45.2	45.3	45.4	43.5	56.7	43.8	7.7	61.8	46.4	48.4	46.4	37.5	42.9
331	8.1	43.8	37．5	36.2	38.6	20.0	39.4	38.5	40.6	40.0	33.3	41.7	2.6	35.0	22.2	36.0	42.5	38.9	36.5
332	22.0	57.4	i4．1	43.3	34.5	；6．6＊	34.1	34.1	34.1	34.1	34.6	34.1	5.0	32.9	25.9	51.5	34.1	37．0＊	37.7
341	$0 . \mathrm{C}$	52.2	4． 9	35.6	41.7	88．7	42.1	40.8	43.1	40.5	38.1	41.7	1.9	34.5	16.7	36.4	40.9	20.0	38.9
342	O． C	41.7	37.5	29.8	36.4	38.9	35.3	36.4	37.5	33.3	50.0	37.1	0.0	32.6	0.0	22.2	36.4	27.3	32.2
354	6.9	50.6	44.8	13.1	44.5	41.9	44.0	44.8	43.9	44.9	38.7	44.5	19.0	53.1	39.7	9.1	43.9	34.2	41.4
355	19.8	56.2	33.9	4． 0	32.8	55.4	34.6	35.1	33.9	35.0	33.3	32.8	0.0	37.0	33.8	15.0	35.0	27.8	34.6
364	0.9	47.2	38.5	36.8	40.3	47.4	42.9	38.9	36.7	36.4	33.3	36.4	8.0	46.4	32.3	28.6	34.4	39.6	37.0
362	0.0	54.9	39.4	36.3	39.2	70.1	39.8	40.2	38.9	39.6	36.0	37.6	12.3	46.7	37.6	31.1	41.3	38.3	38.5
371	3.0	33.9	29.5	22.4	30.6	：9．6	30.3	30.2	32.0	29.8	33.3	32.4	13.3	36.4	27.7	23.8	30.2	31.9	29.5
372	23.8	44.4	36.8	15.0	38.3	25.0	35.5	34.8	36.2	31.8	36.4	34.9	55.9	27.3	22.2	44.2	35.0	16.7	32.9
381	1.7	E4．9	32.5	39.0	34.2	41.7	33.3	33.7	33.8	33.7	33.3	33.3	10.8	34.9	24.5	26.3	33.7	37.3	33.2
； 82	2.1	45.4	29.7	23.0	29.7	37.9	29.7	30.3	27.9	29.2	42.9	29.7	21.4	38.6	24.5	13.3	23.7	30.0	28.4
383	0.0	56.1	39.6	38.8	38.7	45．5＊	39.8	41.2	38.9	40.4	25.1	41.0	6.7	44.2	32.9	15.0	40.0	31.8	35.9
384	4.1	58.4	42.3	29.2	43.5	40．0＊	42.7	41.4	45.0	43.0	40.0	43.1	2.9	37.1	37.8	35.8	41.9	21.2	36.2
384	2.5	51.1	44.2	34.1	42.0	58.0	42.7	41.8	43.8	41.5	38.3	42.5	11.2	44．9	；2．8	26.7	40.8	37.2	38.3
4iL	2.8	54.4	41.1	33.1	40.7	51.1	40.2	41.5	41.2	39.9	40.7	41.5	11.8	45.7	35.5	38.3	40.3	34.9	37.6

＊ESTMATED ERM INCOMPLETE JATA
\because SIVG FREVAILING FATES，NHICH INCLCDE UNILATERAL PEDICTIONS IN POST－KENVEDY ROUND TARIFF KATES．
Sごご次：BASED ON DムTA S＂PPLIED PY STR．

TABLB 14
AVERAGE PERCEMTAGE DEPYE OF COT IE TAEIFPS CM IECOSTRIAL PRODOCTS BI THE AAJOR INDOSTAIALIZED CCOMTAIES IM TRE MIM BASED OU ACTOAL OFPERS AMD OSE OF SEISS FORAOLA

councer	PERCEMTAGE ACTOAL OPPER	CREq OP COT siISS POBAOLA
AUSTEALIA*	2.88	+
AUSIEIA	28.5	54.48
CALADA*	29.1	33. 1
guroreal combualey		
BELGIUA-LUEEABOOEG	28.3	11. 1
UENAAER	25.8	40.7
EEAYCE	27.8	40.2
Gegatil	27.1	41.5
IRELAED	26.7	41.2
ITALY	27.0	39.9
METHERLAMDS	26. 7	41.5
UMITED KIMGDOA	27.7	40.3
PIMLAXD	25.2	51. 1
J \triangle PAE*	25.3	40.7
MEU ZEALAED	11.8	*
MORHAY	24.8	45.7
SUEDEM	23.0	35. 5
SUITZEALAED	21.2	38. 3
UMITED SIATES	34. 1	34.9
aLb Countaizs	26.4	37.6

+MOT A FORAOLA COOMERI
*BASED OU PREVAILIYG RATES, UGICA IBCLODE OUILATERAL REDOCTIOMS II THE POST-KEIERDY BOUND TARIPFS.

SOURCE: BASED OE DATA SOPPLIED BY STE.

It is evident from Table 14 that the overall actual depth of cut for the U.S. was close to the Siriss-formula depth of cut. For the European Community, the actual overall depth of cut was substantially below the Swiss formula cut. It thus appears that the EC did not adhere strictly to its version of the Swiss formula noted in Table 12. The actual depths of cut for the other countries were also less than formula. The conclusion that can be drawn therefore is that aside from the U.S., most countries paid lip servire to the Swiss formula but departed from it in major ways in determining their tariff offers in the MTN.

If we compare the actual cuts with the Swiss formula cuts for the U.S. in Table 10 and 13, less-than-formula cuts were made in the following sectors: wearing apparel (ISIC 322), leather and footwear (ISIC 323-324), and iron and steel (ISIC 371). Greater-than-formula cuts of varying magnitudes were made in all the remaining sectors. The sectors in which less-than-formula cut 3 were offered certainly represent some of the important industries that have apparently been vulnerable to competition from imports in recent years.

Economic Effects of the MTN Tariff Reductions

We have concentrated thus far on the pre-MTN tariff levels, MTN
offers, and depth of cut. While these matters are interesting in themselves, it is not clear how important they are in economic terms. To determine this, we must consider how the MTN offers will affect equilibrium prices, trade, and in turn production and consumption in particular sectors and countries. It is here that our model comes into use.

It will be recalled from Figure 1 that tariffs constitute an exogenous variable in our model. In this sense, the MTN tariff reductions can be entered into our model as a change in this exogenous variable and the model then solved for the resulting changes in all of the variables that are determined endogenously within the system. To obtain the rariff reductions for use in the model, we began by calculating the tariff changes at the BTN line-item level. These were aggregated, using own-country total imports as weights, for each of the 22 ISIC tradable industries in the individual countries. The tariff reductions were then expressed in terms of the change in price for each sector, taken initially as one plus the pre-MTN ad valorem tariff. The resulting changes in price, $\Delta t /(1+t)$, were thus entered into the model as an exogenous change. The model was then solved by computer and results obtained for percentage changes in the endogenous variables in the model. Absolute changes in variables were determined by multiplying the percentage changes times the initial 1976 levels taken as the reference point for all calculations.

The solution procedure first yields results under conditions of fixed exchange rates. The model then permits exchange rates to change in order to restore the initial trade-balance condition and, in the process, generates further changes in the endogenous variables. Since there
are no time lags in the model, all the changes are to be interpreted as occurring instantaneously. In other words, we have assumed that the MTN tariff reductions are to be made all at once and that our model will indicate what the short-run economic effects may be. We have noted already that most of the tariff reductions will in fact be phased in over a period of up to a decade beginning in 1980. We shall have occasion below to interpret our results in the light of this timetable.

As fust noted, our solution procedure permits us to calculate the effects of the tariff reductions on employment by sector in individual countries under conditions of both fixed and flexible exchange rates. While both sets of results are of interest, our preference is for the flexible-rate results. Our emphasis on these results reflects our view that a regime of flexible exchange rates is a closer approximation to pre-sent-day reality than fixed rates. Since the advent of floating in 1973, there has of course been considerable intervention in the foreign exchange markets by central banks. But this intervention has been designed primarily to moderate short-term fluctuations in rates. To the best of our knowledge, there is no evidence that countries have intervened systematically to alter the direction of movement of rates, that is, to cause rates to depreciate when they should appreciate or vice versa. Since, in our view, it is extremely difficult to model short-run intervention by central banks, we believe that it is justified to focus attention on the effects of tariff changes under conditions where the exchange rate can change to correct the initial imbalance of trade that will occur when rates are assumed to be fixed.

To clarify this issue further, suppose that tariffs are in fact reduced muitilaterally. This will result in changes in a country's balance of trade as exports and 1 mports respond to the tariff changes. There will be corresponding changes in production and employment in the individual tradable and nontradable sectors in each country. Holding other things constant, the change in the trade balance will lead to a change in the exchange rate. In our model, we determine what this change would be in order to restore the trade balance to its original position, with the level of capital movements assumed to be given. This is of course an important simplification, and it would require a much more elaborate model than ours to capture all of the microeconomic and macroeconomic forces at work in the world economy and in individual countries. To our knowledge, nobody has successfully developed such a model that can cope with all of these complexities. Our model thus seeks to provide details of changes in employment at the microeconomic level, without tracing through all of the dynamic forces at work in the adjustment process and without considering relevant macroeconomic and monetary phenomena.

Keeping the foregoing points in mind, let us turn now to our analysis of the MTN tariff reductions. Considering briefly the results under conditions of fixed exchange rates, it can be seen in Appendix Tables D.1D. 3 that the tariff reductions will result in a deterioration of the U.S. balance of trade and an overall decline in employment of 47.1 thousand workers. A deterioration in the trade balance is also
experienced by Canada, Finland, France, Italy, New Zealand, Norway, and the United Kingdom. The remaining countries all experience an improvement in their balance of trade. It is noteworthy that all of the countries except the U.S. and U.R. experience an overall increase in employment. This increase amounted to 164.5 thousand workers for the combined EC, 7.4 thousand workers for Japan, and 3.6 thousand workers for Canada. It can be seen in Appendix Table D. 4 that except for some of the smaller countries, the total employment changes were all significantly less than one per cent of the 1976 level of employment. Thus, for the U.S., the decline in employment was equal to .05 per cent of total employment. Appendix Tables D.1-D. 4 contain the relevant details on the changes in trade and employment under fixed rates by sector in each country for the benefit of the interested reader.

Let us consider now the results of the MTN tariff reductions under conditions of flexible exchange rates. The absolute and relative employment effects by sector and country are indicated in Tables 15 and 16. The effects on the U.S. can be seen to be very small across sectors. There is an increase in employment overall of about 2,300 workers, which is a tiny fraction (. 003 per cent) of total 1976 employment. The largest increases, in thousands of workers, are recorded for agriculture (13.0), chemicals (3.5), iron and steel (1.2), nonelectrical machinery (6.4), electrical machinery (3.2), and transport equipment (3.8). Negative employment effects are recorded for textiles and wearing apparel (-6.0), nonmetallic mineral products (-1.4), miscellaneous manufactures (5.7), and for all the nontradable industries except mining and quarrying and construction.

TABLF 15

ALS L'ITE GUP: BY IEIC: ECT, IN TME MAJUR INDISTRIALIZED COUNTRIES ITE TC TASTFE REDUCTIONS IA THR MIM

TABIE 15 （COYT．）

	311	372	$3 P 1$	392	3 F ？	3R4	J3A	2	4	5	6	7	8	9	T0T
4L4	J．JJ1	C． 452	0． 1,6	$-0.3+2$	0.167	－0．777	0.321	J． 039	－0．000	0.086	－0．153	0.006	0.010	－0．301	0.874
ATA	1.436	0.153	－2．546	2.143	C． 7 C 7	0.326	2.559	0.015	－0．153	0.206	－1．728	－0．294	－0．383	－2．55	6.611
こりし	－0．J49	J．t22	-2.635	1.713	-1.400	1.749	4． 194	1.044	－0． 216	0.914	－1．386	－0．120	0.022	－3．698	5.296
EC	5.77 t	1． 507	10.517	19.527	14.975	14.591	32.787	2．$\downarrow \in 4$	－1．591	－4．737	-24.628	－2．701	－5．172	－43．124	121.436
BLX	1．Jul	－－． 637	1．16t	1.017	1.189	2.556	0.950	-0.520	－0．124	-0.305	－3．247	－0．412	－0．628	－5．083	14.986
Den	J． $3+0$	0.033	0.195	1． 1.55	0.473	0.279	1.613	-0.701	－0．073	－0．092	－1．131	-0.254	－0． 362	－2．675	5.611
FR	1.555	U．S＇ty	1． 225	5．3．9	2．74 ${ }^{\circ}$	1.078	3.641	0.479	－0．255	－0．420	－4．246	－0．359	－0．820	－7．043	24.499
CPR	1．Je3	J．3J＇s	3． $\mathrm{HSN}^{\text {d }}$	5.008	5．t（9）	4.638	11.941	－3．223	－0．704	-1.850	－8． 351	－1．745	－2．297	－12．370	22.154
If E	U．J21	0.489	0.245	0.125	0.12 C	0.026	0.384	0.022	0.036	0.036	－0．206	0.075	0.024	－0．643	4.772
II	1． 301	J． $4+4$	2． $2 \rightarrow 4$	1.723	1．<05	2.114	2.895	0.861	－0．251	-1.342	－2．726	－0．137	－1．053	－3．336	18.726
± 1.	-3.140	U．レッも	－v．079	C． 516	$0.5: 3$	9．746	2.245	-0.370	－0．072	-0.059	－1．946	－0．181	－0．228	－4．075	9.856
UK	1.003	J．${ }^{\text {Ju）}}$	1．0＊1	3.277	3.142	1.065	0.111	1.918	－J． 117	-0.7134	－2．773	0.312	0.192	－7．899	20.831
P1 M	J．1J1	0.953	0.130	0.520	3． 37	0.311	0.245	0.028	－0．037	-3.049	－0．487	－0．011	－0．096	-1.383	2.825
JPM	－1．635	i．1s3	2． 802	－1．424	3.225	1.315	3.767	－3．177	-0.104	－0．713	－3．193	－0．436	－0．348	－3．028	C． 956
12	－J．JJ9	U．こう」	－0．107	－0．3：7	0.611	0.351	0.283	3.024	0.004	0.075	－0．067	0.052	0.020	-0.315	1． 962
nus	J． 320	J． 221	$0.0<8$	0.217	0.139	0.052	0.617	0.108	－0．024	－0．130	－0． 552	－0．c29	－0．083	－1．175	2.040
SU0	.719	ט．」๖1	$0 . \varepsilon ゅ f$	1.438	1．63	1.402	0.894	－0．302	－0．061	－0．157	－0．943	－0．143	－0．256	－2．363	3.039
S4て	-3.343	J． 19	0.711	－0．327	3.786	0.017	1.276	－0．310	－0．140	－0．011	－0．640	－0．364	－0．489	－0．923	－0．565
US	1.100	0． 397	0.557	t． 412	3．198	3.778	－5．738	2． 528	－0．487	0.234	－8． 166	－0．617	－1．913	－10．170	2． 291
IJTAL	6． 313	1．057	10.442	30．24）	23.573	23.905	41.405	5.763	－2．811	－4．298	－41．943	－4．65\％	－8．688	-68.734	146.765

TABLE 16

pehこentage（famges in enployneyt under plexible exchange bates By ISIC SECTOR IN THE MAJOB INDISTAIALIZED COONTRIES tME TC TARIPF PEDUCTIOAS IN THE BTH

	1	310	321	322	723	324	331	332	341	342	354	358	355	364	362
ALA	0.241	0.134	－0．563	0.103	$4.4 ¢ 1$	1.045	－0．278	－0． 209	－0．026	0.062	0.201	－2．825	－3．065	0.173	0.185
4TA	J． 131	－0．0．5	3.559	4.021	2.612	3． 346	2.811	0.975	2.015	0.178	－0．124	－0．650	－1．218	－0．116	0.291
ごD	$0.45 s$	0.100	－0．2A7	0.565	2.844	1.784	0.763	－0．123	1.468	－1．554	0.462	1.159	－4．505	0.543	－0．973
EC	3.322	0.391	1.723	1.572	1． 31	0.913	－0．039	0.782	－0．052	0.124	0.480	－0．151	1.014	0.158	0.448
BL4	J．+07	0.673	6.879	6.397	2.418	0.589	0.777	0.597	1.925	－0．052	5.511	－6．651	3.969	－0．573	1.191
OE\＃	0.175	1． 144	4.505	6.427	5.754	4.189	0.213	2.959	0.016	0.020	0.947	－0．150	0.093	－0．141	0.767
PR	J． 250	U． 219	1．278	1.203	1.370	0.961	－0．093	－0．32A	－0．146	0.093	0.106	0.239	1.949	－0．129	0.440
GPR	－J．3\％4	c．t30	2．045	0.633	1．c1e	0.849	－0．045	1.039	－0．115	0.149	0.850	－0．273	0.590	－0．181	0.383
ite	J． 8 （\％ 7	$0 . \varepsilon<\downarrow$	$3.4>9$	4.230	2.638	1.810	－0．036	0.263	－0．182	0.349	1.273	－0．595	2.257	0.939	0.727
17	－ 0.105	0.244	1.115	2.044	1.201	0.996	C． 242	1.118	－0．077	0.135	－0．695	0.276	0.851	0.612	0.283
－	J． 127	C． 691	7.729	6.713	5．ces	2.744	－0．353	0.654	0.443	0.012	2.961	－1．205	1.373	－0．027	0.504
JK	－J．IJu	0.149	0.667	0.579	1.177	0.510	－0．282	0.123	-0.265	0.176	0.070	0.734	0.707	0.424	0.387
P18	J．JU3	－0．cy	1． 347	3.392	¢． 51	4.541	0.676	1.836	0.834	0.071	0.280	0.241	1.205	0.035	1.092
JPM	J．3；2	－0．673	－ 3.344	0.073	－C．tis	－0．454	0.021	－0．029	－0．033	0.005	－0．034	－0．367	0.330	0.178	0.072
± 2	0.607	0.199	2． 332	$0 .(9)$	0.809	－0．224	0.299	0.263	0.413	0.157	－0．765	0.417	1.066	－0．053	－0．099
noE	J．3＋ 1	－0．135	1.89 t	2．141	2.715	0.777	0.193	－7．083	0.769	0.075	0.964	0.641	1.787	0.780	－6．609
3凶	J． $3+3$	－0．2：0	0.225	0.522	C． 284	－0．210	0.080	1.570	－0．526	0.061	0.253	－0．736	1.260	0.268	0.101
SU2	－3． 339	－0．254	0.132	－0．18？	－1．c67	－2．372	－0．852	－1．548	－0．735	0.244	1.085	－3．622	0.457	-0.368	0.032
J	J．373	－0．047	－0．109	-0.407	0.415	0.146	－0．084	0.180	0.107	0.039	0.321	0.522	－0．076	－0．308	0.060
cozal	0.110	0.130	0.703	0.621	0.053	0.699	0.033	0.364	0.142	0.018	0.364	0.052	0.361	0.076	0.262

TABLE 16 (COMT.)

	97	372	381	382	383	384	381	2	4	5	6	7	8	9	for
ALA	0.002	1.719	0.122	-0.038	0.263	-0.192	0.555	0.050	-0.000	0.017	-0.011	0.001	0.002	-0.024	0.015
4 TA	1.434	1.009	-2.848	3.237	0.P10	0.900	7.050	0.067	-0.462	0.082	-0.358	-0.149	-0.282	-0.037	0.224
こと	-0.357	1.143	-1.739	1.542	-1.c:3	0.936	5.519	0.715	-0.193	0.142	-0.084	-0.017	0.004	-0.113	0.055
sc	0.310	0.351	0.458	0.507	0.451	0.437	2.034	0.194	-0.143	-0.058	-0.155	-0.044	-0.085	-0. 191	0.121
Bix	0.980	-0.313	1.022	1.540	1.009	3.502	2.626	-1.376	-0.347	-0.096	-0.454	-0.148	-0.260	-0.521	0.388
JEN	1.3)5	0.930	0.477	1.551	1.231	0.455	5.493	-0.040	-0.487	-0.047	-0.320	-0.153	-0.243	-0.356	0.234
PR	0.677	0.531	0.245	1.119	C. 4E 2	0.443	1.169	0.282	-0.140	-0.023	-0.121	-0.030	-0.065	-0.150	0.117
iPK	J. 178	0.273	0.626	0.421	0.469	0.544	2.650	-0.060	-0.306	-0.096	-0.235	-0.117	-0.171	-0.231	0.090
188	0.352	4.930	3.097	2.583	1. CE9	0.193	3.088	0.220	0.042	0.047	-0.122	0.117	0.086	-0.302	0.467
IT	0.217	0.435	0.601	0.326	C. 216	0.313	0.905	0.264	-0.102	-0.076	-0.103	-0.012	-0.077	-0.138	0.099
\#i	-3. $2 \rightarrow 4$	J. 574	-0.117	0.900	c. 590	0.987	3. 806	-0.881	-0.160	-0.014	-0.239	-0.058	-0.075	-0.317	0.217
uk	J. 278	0.401	0.259	0.428	C. 435	0.118	2.319	0.558	-0.034	-0.042	-0.068	0.020	0.014	-0.115	0.085
PIM	J.583	0.845	9.422	0.627	ט. $6: 6$	0.791	1.553	0.311	-0.132	-0.056	-0.153	-0.007	-0.082	-0.214	0.132
J¢\%	$-0.0+4$	0.072	0.274	-0.135	0.265	0.108	0.430	-0.099	-0.032	-0.014	-0.028	-0.013	-0.020	-0.028	0.002
$y 2$	-J. 250	6.123	-0.42t	-0.317	$0 . C \in 3$	0.271	2.452	0.484	0.026	0.081	-0.035	0.046	0.025	- .1 .117	0.163
	1.949	1.818	0.695	0.673	C. 54	1.138	3.928	0.986	-0.127	-0.072	-0. 186	-0.018	-0.101	-0.240	0.114
Jdo	J. 900	0.505	0.614	0.335	1.069	0.941	2.600	-0.309	-0. 186	-0.054	-0.159	-0.052	-0.106	-0.185	0.074
312	-0.255	0.112	0.977	-0.249	c.6E1	0.127	1.101	-0.521	-0.232	-0.006	-0. 187	-0.145	-0.177	-0.189	-0.020
JS	$0.1+9$	J. 130	0.036	0.282	C. 174	0.211	-0.446	0.323	-0.066	0.006	-0.039	-0.017	-0.025	-0.036	0.003
tutal	J. 206	0.358	0.191	0.383	0.326	0.342	1.000	0.223	-0.110	-0.023	-0.079	-0.030	-0.050	-0.099	0.054

The tendency for the nontradable industries (ISIC 2-9) to lose employment when tariffs on tradables are reduced multilaterally is evident across countries. The reason is that tariffs constitute a tax on tradable goods. Thus, when this tax is reduced, both supplies and demands of tradables will expand at the expense of nontradable industries.

The effects on the tradable industries in the other countries cin be read in the body of Tables 15 and 16 . For example, Japan records employment increases, in thousands of workers, in such sectors as agriculture (3.4), nonmetallic mineral products (0.9), metal products (2.8), electrical machinery (3.9), transport equipment (1.3), and miscellaneous manufactures (3.8), and declines in food, beverages, and tobacco (-1.1), textiles (-4.1), and nonelectrical machinery (-1.4). West Germany records employment increases in food, beverages, and tobacco (3.5), textiles (8.4), wearing apparel (2.1), furniture (1.2), chemicals (5.8), and durable goods generally (31.7), and declines especially in agriculture (-6.0). Canada has employment increases in agriculture (2.6), wood products (0.9), paper and paper products (2.1), nonelectrical machinery (1.i), transport equipment (1.7), and miscellaneous manufactures (4.4), and a decline in printing and publishing (-1.6), rubber products (-1.4), fabricated metal products (-2.6), and electrical machinery (-1.4).

Individual countries will thus vary in terms of the particular tradable industries that will experience employment increases or declines as the result of the MTN tariff reductions. In general, however, the nontradable industries will be adversely affected for the reason mentioned
earlier. But what is especially noteworthy is that the absolute employment effects in particular are all comparatively small. In most cases in the U.S., the changes are a small fraction of 1 per cent, as is evident from Table 16. The same is generally true for Japan. On the other hand, in several countries, particularly in some of the smalier ones, the implied percentage changes in some sectors are substantially in excess of 1 per cent.

In terms of the labor-market adjustments that might be required, the results thus suggest that large countries like the U.S. and Japan would not experience any unusual difficulties. But some of the smaller countries especially might experience adjustment problems between sectors that would expand or contract in response to the tariff reductions. We have already mentioned that our results are based upon the assumption that the MTN tariff reductions will be made all at once. In fact, most of the reductions will be phased in over a period up to a decade beginning in 1980. It would thus appear that any adjustment problems that do occur should be relatively minor.

Let us consider next the effects on prices. The woiel generates a series of price changes by sector in each country, and these prices can be averaged across sectors for individual countries. The detailed results by sector are =ecorded in Appendix Tables E.l-E. 4 for changes in expurt prices, import prices, home prices, and an index of import and home prices. The uverall effects by country are sumarized in Table 17.

The various price changes will iccur in the following manner. The reductions in tariffs in the MTN will lead to increases in the world prices

TABLE 17

yijua lhuustalalized cuumeies due tc fabife redoctions in the hty

－Uumisy	EXPORT PEICES＊	$\begin{aligned} & \text { IMPGET } \\ & \text { PRICES } \end{aligned}$	$\begin{gathered} \text { FCPE } \\ \text { PRICES* } \end{gathered}$	IMDEX CP IMPUPT AXD HOg』 PEICES＊	EPPECTIVE exchange eatet
Austalia	0.18	－ 0.78	－C．Cs	－0．07	0． 25
AUSItala	0.07	－2．05	－C． 50	－0．73	J． 00
catioum	0.23	-1.67	－C． 20	－0． 29	3.12
LUsuraty こosmisity	0.12	－1．63	－C． 44	－0．17	
belulua－LUxEAdutag	－0．50	－2．48	－C．05	－ 3.48	3．91
OEmakg	－0．02	－1．99	－C． 42	-0.62	0.17
Ftante	0.22	－1．47	－C． 20	0.50	－0．19
UELAANY	－0．00	－1．87	－0．33	－0． 00	0.00
Ibelamd	－0．05	－2．14	－C． 34	－0．52	0.22
itali	0.24	－1．35	－C． 16	－0．25	-2.11
NEL ：atainus	－0．25	-1.97	－C． 46	－0．69	0.26
unced kiagoun	0.27	－1．48	－C． 13	－0． 20	-0.23
fisciajo	0.24	－1． 17	－C．<0	－0．31	－0．09
jAPAE	0.14	-1.07	－0．03	－0．05	0.12
HEy LEALAED	0.29	－0．64	－C． 10	－0．15	-3.05
nutimay	$0 . \angle 8$	－0．60	－C． 14	－0．22	－0．1＊
－MiJEu	0.06	－0．83	－0． 21	－0．32	0.06
SWITuEKLAXD	－0．07	－0．65	－-18	-0.47	0.16
JNITED دTATES	0.37	－0．87	$-C .84$	－0．06	－0．25
4LL－UUリIEIEJ	0.23	－1．21	－0． 12	-0.18	

－AVEFAUZ PJR ALL ISIC SRCTCRS．NEIGHTEC BI VALOE CP PRODUCTIOM． －POSILIVE SIUN MEhNS APPEZGIATION；NEGATIVE SIGM PEANS DEPRECIATIOB．
of tradable goods and thus to increases in export prices. There will be further changes in export prices, both positive and negative, when the exchange rate responds to the initial trade-balance impact of the tariff changes. The overall percentage changes in export prices by country as a result of the MTN tariff reductions are indicated in the first column in Table 17, and they are all less than one per cent. Import prices will be reduced when tariffs are lowered, and here the relative effects are larger, as is evident in the second column of Table 17. Home prices will also be lowered particularly as producers substitute towards cheaper intermediate inputs, although the relative effects noted in the third column are small because of the greater size of the home as compared to the foreign sector in each country. The next column, which is an index of the preceding two columns, indicates that domestic prices will tend to fall as the result of the tariff reductions. The decline in the index is an estimated. 06 per cent for the U.S. The declines for wost other countries are larger than for the U.S., though none exceed one per cent.

Finally, it is of interest to consider the percentage exchangerate effects of the MTN tariff reductions. These are summarized in the last column of Table 17. It will be recalled that these exchange-rate changes are what the model estimates would be required to restore the initial trade balance position for each country following the tariff reductions. The detailed changes in exports and imports by ISIC sector and country are recorded in Appendix Tables E. 5 and E.6.

The percentage exchange-rate changes ia Table 17 are measured as changes in effective exchange rates, based upon 1976 trade for individual
countries vis-a- $\because: s$ the cther countries and the rest of world. All changes are siown to be a ixaciion of cre per cent. ite eiteciave exchange rate of the U.S. records a depreciation of one quarter of one per Eent. Depreciations are also noted for France, Itaiy, V̈nited Kingiom, Finiand, New Eesiand, and Norway. The remaining countries show small appreciations.

The general conclusion that emerges irom our analysis is that the ne. $\operatorname{xari}: f$ reducions will have absolutely and relatively very small efiects on employment in the U.S. across sectors and overall. There may be some very slight reduction in the average of U.S. import and home prices as the resuit of the tariff reducions, and the ï.s.effective exchange rate may cepreciate marginally. Similar conclusions apply to the other major industrialized countries, alticugh some of the smaller countries might experience adjustment problems as employment expanded or contracted in response to the tariff changes. Employment in the nontradabie industries generally is most frequently adverseiy affected by the sariff changes because of the substitutions that will sccur in favor of tradable goods that become relatively cheaper.

It is particularly ncteworthy that the results of our analysis are broadiy consistent with those obtained in our earlier studies in which we had oceasion to analyze the econoric effects of alternative formulae For tariff cu:ting in the MTN. See, in this regard, Deardorff et al. (1977, 1979), which follow essentially the same model as is currently in use but witin 1970 as the reference year. The results noted above are consistent also with those obtained by other investigators, such as Baldwin et al. (1978), Brown and Whalley (1978), and Cline et al. (1972).

While our model provides information on changes in prices and changes in production, consumption, and trade, it does not lend itself on conceptual grounds to analysis of the changes in economic velfare that would result from tariff reductions. We decided nonetheless to develop some ad hoc procedures for welfare calculations. These procedures were mentioned earlier and are discussed in greater detail in Appendix B below. The one that we have used for tarif! reductions is depicted in Figure B.l, and it is essentially similar to the static, partial-equilibrium measures commonly used in the literature to calculate changes in consumer and producer surplus.

The results of our calculations of the changes in economic welfare are presented in Table 18. It can be seen that the absolute welfare gain for the U.S. is $\$ 710$ gillion. In relative terms, as a percentage of U.S. gross domestic product in 1976, the welyare gain is four one-hundredths of one per cent (. 04 per cent). The absolute weltare gain for the European Community is $\$ 1.4$ billion, which is equal to one tenth of one secent (. 10 per cent) of comoined CDP. Canada's gain is $\$ 294$ gillion, which is .17 per cent of GDP. Japan's gain of 54 million, which is very small, may reflect our use of prevailing rates which already include the unilateral reductions in cariffs that were made prior to conclusion of the MTN. The same is true for Australia. Of the i8 countries shown in the table, only Germany and Switzerland experience negative welfare changes and these are both small. The total stztic welfare gain for all 18 countries combined is 52.6 billion, which is .06 per cent of combined GDP.

It thus appears that tariff reductions will be beneficial to econo-

TADLE 18

 doe to falipf iedoctions il iat ati

CHABGE IH ECOMOAIC ELEAEE
(BILL 8)
808
GROSS DOAESTLC PEODUCT
councay
22. 5
0.03
aUSTRALIA
52.2
0.14

AUSTELA

CAMADA
293.7
0.17

EUEOPRAN : כHAOMITI
1360.5
0. 10

3ELGIJA-LIXEABOOEG
153.8
0.23

DEMBARE
29.7
0.08
fRAMER
279.5
0.09

GERAMy
-57.6
$-.01$
IBELAMD
44.4
0.56

ITALI
177.6
0.11

METHERLAMDS
256. 9
0.31

UEITEJ KIYGDOA
476.2
0.24

FIMLAND
31.6
0.12

JAPAI
47.3
0.01

MEU ZEALAND
24.6
0.21

MORYAI
52. 0
0.18

SURDEM
33.2
0.05

SHITZEALAMD
-35.7
$-.06$
UMITED STAIES
709. 8
0.04

ALL COOMTRIES
2591. 8
0.06

YOTE: CALCULATED BASED OY TGE GEIROD DEPICTEC II APPEIDIX PIGORE BQ 1.
aic welfare in the U.S. and most of the other major industrialized countries. While these gaine are small, it should be emphasized that they are permanent. That is, consumers will benefit permanently from their increased consumption of lower-priced goods and producers will benefit permacently from more efficient resource use in production. The nation as a whole will therefore be better off as a consequence of the tariff reductions in the MIN.

It is wurth noting once again that our results are broadly consistent with those obtained by other investigators. For example, Baldwin et al. (1978, p. 21) estimated that an across-the-board 50 per cent multilateial tariff reduction (with agriculture, focd, textiles, wearing apparel, and petroleum exempted) in the MTN would yield a net stream of future velfare gains to the U.S. in the amount of $\$ 1.1$ billion (based on 1971 prices and using a discount rate of 10 per cent). Cline at al. (1978, p. 99) estimated a static improvement in welfare for the U.S. of $\$ 947$ million (in 1974 prices), based upon a tariff formula that was very close to the Swiss formula that we discussed. Cline et al. also estimated welfare improvement for the following countries: Canada, $\$ 227$ million; Japan, $\$ 283$ million; and the European Commity, $\$ 460$ million. Our welfare estimates (based on 1976) are evidently greater than those of Cline et al. for Canada and the EC and lower for Japan. Finally, we may note that Brown and Whalley (i978, p. 31) have estimated static welfare gains (based on 1973), using the Swiss formula, as follows: U.S., $\$ 810$ million; European Community, $\$ 1.5$ billion; and Japan, $\$ 450$ million.

It would take us too far afield to account for the differences in the welfare estimates noted. Our model differs conceptually in certain
respects from the others, and we have used a somewhat different system of data ciassification. In any event, the important point is that the various studies are in agreement that there are positive but small gains in economic welfare to be obtained by the U.S. and the other major indusirialized countries as a consequence of tariff reductions in the MTN. We had occasion earlier in our introductory remarks to note that nct everyone in the society will benefit from tariff reductions. It is possible that workers will be displaced because of competition from increased imports and there may be an idiing of physical capital in individual industries. These costs of adjustment must be taken into account. The only study that has considered these adjustment costs is Baldwin et al. They estizated the adjustmert costs of labor for the $\mathrm{C} . \mathrm{S}$. at $\$ 37$ million and of physical sapital at $\$ 5$ million, so that the net improvement in economic welfare for the U.S. is still (in present-value teras) in excess of 51 billion, although small in relation to GDP. Comparable estimates of the adjustment costs of tariff reductions are unfortunately not available Eor other countries. But if the estimates for the U.S. are any guide, these costs should not be of great inportance elsewhere.

The Eoregoing recarks are not meant to imply that there will be no industries adversely affected by the tariff reductions. A glance at Tables 15 and 16 above and Appendiy Tables D. 3 and D. 4 will reveal that there are particular industries in the U.S. and other countries that may experience employment declines as a result of the MTN. The studies by Baldwin et al. and Cline et al. also contain disaggregated information on the sectors in the $\mathbb{U} . S$. that may lose employment. Unfortunately, our results for individual sectors cannot be compared directly with these
other studies because our model is more complex in terms of making explicit allowance for general-equilibrium interactions and also our system of data classification is somewhat different.

- Thus, in terms of sector or industry detail, it might be difficult to identify unambiguously the particular industries in the U.S. and elsewhere that would be most vulnerable to competition from imports because of the $M_{1} N$ tariff reductions. For example, Baldwin et al. (1978, pp. 23-24) have identified 31 industries in the U.S. that might experience reduced labor requirements in excess of one per cent due to tariff reductions in the MTN. Our results, which are much more aggregative and based upon a more elaborate model than the one used by Baldwin et al., suggest that unemployment within broader manufacturing sectors would be relatively small and that most of the employment declines would occur in the nontradable sectors. Therefore, if one wanted for policy purposes to identify displaced workers that might be eligible for adjustment assistance, it would clearly be difficult to select them from the nontradatle industries. In any event, because of the small numbers of workers involved and the fact that most of the tariff reductions will be phased in over a period of years, problems of particular industries can be best dealt with by normal market growth and by existing programs designed to handle unemployment, welfare, and worker retraining and retirement.

IV. Effects of Changes in Nontariff Barriers

A great deal of attention has been devoted in the MTN to the discussion and formulation of codes and agreements concerning nontariff measures. The codes deal with: safeguards; custums valuation; standards and technical regulations; government procurement; subsidies and countervailing duties; and sommercial counterfeiting. Commodity agreements have been discussed for: dairy products; meat; coarse grains; wheat; and the use of the wine-gallon method of tax and duty assessment.

While nontariff barriers may have imfortant restrictive effects upon trade, it is unfortunate!y difficult to measure these effects because of the lack of information. In order to fill this gap in information, one approach adopted has been to compile data on the frequency of use of nontariff measures by industry and sector, as, for example, in Kurray and waiter (1978). A similar approach is to deternine the number and type of complaints filed by a country's exporters. This latter type of information was made available to us by STR and will be presented below.

The difficulty nevertheless remains of determaning inat f.e :=jue and employment impact may be if pariicuiar nontariff barriers aye iterai:zej. To shed at least some partial light on this, we ha:e wsed our zodei :0 analyze the affects of the concessions on agricultural products segotiated in the MTN between the U.S. and the other major countries. In addition, we have analyzed the effects of the multilateral liberalization of government procurement that may occur if the procurement code comes into effect. Acceptance of the code on customs valuation may also have
an impact on trade. We had hoped to analyze this impact as well but unfortunately the sample of data that we obtained was fairly aaall and not sufficiently representative.

Frequency Distribution of Complaints Filed with STR

In the course of the negotiations, STR invited U.S. exporters to call to their attention any foreign nontariff measures that affected U.S. exports adversely. During the period, 1975-78, STR received complaints involving: (1) goverament procurement; (2) customs valuation; (3) industrial standards; (4) health and safety standards; (5) product and content standards; and (6) marking, labelling, and packaging requirements. These data are summarized by type of measure and region in Table 19.

Of the 340 complaints filed, heal:h and safety standards accounted for 41.8 per cent, government procurement, 18.8 per cent, industrial standards 18.5 per cent, and castoms valuation, 11.8 per cent. In terms of regions, more than half of the complaints concerning government procurement were directed to the European Community and Japan. These two regions also accounted for 50 per cent of the complaints concerning customs valuation, more than 75 per cent of the complaints involving indusrrial standards, and $40-50$ per cent of the complaints for the other measures.

The complaints have been classified by sector and region in Table 20. It is evident from the totals that about half of the total complaints were connected with agricultural products (ISIC 1 and 310). Complaints about government procurement were concentrated in electrical machinery (ISIC 383), transport equipment (ISIC 384), and other manufactures (ISIC

Table

Total Number of Complaints Concerning Nontariff
Measures Filed with STR by U.S. Exporters, 1975-78:
Classified by Type of Measure and Region

Type of Measure	Canada	EEC	Japan	Other Industrial Countries	Rest of World	Total	$\%$
1. Governnent procurement 2	$\stackrel{1}{(1.6 \%)}$	$\begin{aligned} & 22 \\ & (34.4 \%) \end{aligned}$	$\begin{gathered} 11 \\ (17.2 \%) \end{gathered}$	$\begin{gathered} 6 \\ (9.4 \%) \end{gathered}$	$\begin{gathered} 24 \\ (37.5 \%) \end{gathered}$	$\begin{gathered} 64 \\ (100.0 \%) \end{gathered}$	18.8\%
2. Customs valuation $\%$	$\stackrel{4}{(10.0 \%)}$	$\begin{aligned} & 16 \\ & (40.0 \%) \end{aligned}$	(10.0%)	-	$\begin{aligned} & 16 \\ & (40.0 \%) \end{aligned}$	$\begin{gathered} 40 \\ (100.0 \%) \end{gathered}$	11.8%
3. Industrial standards 2	-	$\begin{aligned} & 22 \\ & (41.5 \%) \end{aligned}$	$\begin{gathered} 19 \\ (35.8 \%) \end{gathered}$	$\begin{gathered} 2 \\ (3.8 \%) \end{gathered}$	$\stackrel{10}{(18.9 \pi)}$	$\begin{gathered} 53 \\ (100.0 \%) \end{gathered}$	18.5\%
4. Health and safety standards $\%$	$\stackrel{4}{(2.8 \%)}$	$\begin{aligned} & 31 \\ & (21.8 \%) \end{aligned}$	$\begin{gathered} 27 \\ (19.0 \%) \end{gathered}$	$\begin{gathered} 22 \\ (15.5 \%) \end{gathered}$	$\begin{aligned} & 58^{\circ} \\ & (40.8 \%) \end{aligned}$	$\begin{gathered} 142 \\ (100.0 \%) \end{gathered}$	41.8%
5. Product content standards 2	$\begin{gathered} 2 \\ (14.3 \%) \end{gathered}$	$\begin{gathered} 7 \\ (50.0 \%) \end{gathered}$	-	-	$\begin{gathered} 5 \\ (35.7 \%) \end{gathered}$	$\begin{gathered} 14 \\ (100.0 \%) \end{gathered}$	4.1%
6. Marking, labelling, and packaging requirements 2	$\begin{gathered} 2 \\ (7.4 \%) \end{gathered}$	$\begin{gathered} 6 \\ (22.2 \%) \end{gathered}$	$\stackrel{5}{(18.5 \%)}$	-	$\begin{aligned} & 14 \\ & (51.9 \%) \end{aligned}$	$\begin{gathered} 27 \\ (100.0 \%) \end{gathered}$	7.9\%
Total 2	$\begin{aligned} & 13 \\ & (3.8 \%) \end{aligned}$	$\begin{aligned} & 104 \\ & (30.6 \%) \end{aligned}$	$\begin{gathered} 66 \\ (19.4 \%) \end{gathered}$	$\begin{gathered} 30 \\ (8.8 \%) \end{gathered}$	$\begin{aligned} & 127 \\ & (37.4 \%) \end{aligned}$	$\begin{gathered} 340 \\ (100.0 \%) \end{gathered}$	100.0\%

[^0]

38A). Complaints about customs valuation were concentrated in chemicals (ISIC 35A) and in durable manufactures (ISIC 381-38A). Tables 19 and 20 thus provide some perspective on the regional and sectoral distribution of complaints that U.S. exporters tave filed concerning foreign nontariff measures.

Presumably, exporters in foreign countries have been adversely affected by U.S. nontariff measures. But such complaints have apparently not been collected systematically by foreign governments. While the complaint data reveal that there may be genuine and perhaps serious impediments to trade, there is unfortunately no way in which these data can be utilized directly in our model to obtain estimates of the effects of changes in nontariff measures.

Some information is availiable, however, on the agricultural concessions negotiated between the U.S. and the other major industrialized countries in the MTN. Also, we have some information on the total amounts of government procurement that countries have stated that they will liberalize in order to permit foreign exporters greater access to their markets. We shall analyze each of these matters in turn, using our model.

Agriculture

Agriculture has proven to be a stumbling block in previous rounds of multilateral trade negotiations. This appears to be the case as well for the present MTN. Countries protect their domestic agriculture for a variety of reasons, including especially a desire to promote self sufficiency, to prevent income disparities vis-a-vis other sectors of the
economy, and to ease the process of adjustment within agriculture and between agriculture and other sectors. Trade liberalization may therefore require changes in domestic agricultural policies that many countries are reluctant to undertake.

In both the Rennedy Round and the MTN, the U.S. tried to link the liberalization of trade in industrial and agricultural products. As noted above, the U.S. is a major net exporter of food and food products and would thus stand to benefit by reductions in foreign import barriers. The same is true for such other important agricultural exporting countries as Australia, Canada, and New Zealand. The focus of the agricultural discussions in the MTN has been on the restrictive policies followed by the European Community, with its Common Agricultural Policy, and by Japan with regard especially to imports of beef and citrus fruits. Efforts were also made in the MTN to negotiate international commodity agreements covering beef, dairy products, and wheat. Finally, the codes on subsidies and countervailing duties, safeguards, and standards are all relevant to agricultural trade.

It is beyond the scope of this report to review the agricultural negotiations in detail. It appears, however, based upon studies by Schnittker Associates (1979) and Houck (1979), that only very modest gains have been made in the liberalization of agricultural trade.

According to Schnittker Associates, the U.S. obtained concessions in the MTN on the following commodity grc:ips: almonds, beef, canned peaches and fruit cocktail, citrus, poulty, rice, soybeans and products, tobacco, vegetable protein concentrates and isolates, and wine. In 1976,
exports of these products totaled $\$ 6.9$ billion in comparison to total U.S. agricultural exports of $\$ 23.0$ billion. The value of exports to countries from whom trade concessions were obtained was $\$ 1.9$ billion, which represented about 8 per cent of the total just mentioned.

Schnittker Associates calculated the increase in trade that would take place for each commodity group from 1980 to the end of the transition period for the MTN in 1987, as the result both of reductions in foreign tariffs and quantitative restrictions. Since, in our model, we have already made allowance for the tariff concessions on agricultural products and foodstuffs, we shall concentrate here only on the effects of reductions in foreign NTB's. The results obtained by Schnittker Associates are sumarized by commodity group and country in Tatle 21. The estimated total increase in U.S. agricultural exports was $\$ 305.7$ million. It is evident that the increase was concentrated mainly in beef, citrus, poultry, and soybeans and products. Japan accounted for about half of the total estimatec increase and the European Community for about one-fourth. It should be noted that the U.S. made a number of other requests for concessions, besides those listed in Table 20, from Japan, the EC, and other countries, fut these requests were denied.

Other countries asked the U.S. in turn for some concessions on agricultural products. Several were granted, the most important one being a change in the U.S. import quota on cheese. Schnittker Associates estimated that this would result in an increase in cheese imports of 50,000 metric tons. Estimating very roughly that cheese sells for about $\$ 2,000$ per metric ton, we calculated that U.S. cheese imports
would rise by $\$ 100$ million as a result of this concession. The net increase in U.S. agricultural exports as a result of the MTN concessions was thus an estimated $\$ 205.7$ million.

We presume that other agricultural concessions were granted by individual countries in the MTN. But at the time of writing, we could not ascertain what these concessions were. We cannot as a consequence determine what the economic effects might be of multilateral trade liberalization in agricultural products. We set ourselves accordingly the more limited task of assessing the bilateral concessions involving the U.S. that have been noted above.

We proceeded by treating the value of the bilateral concessions listed in Table 21 as a relaxation of import quotas in the agricultural sector (ISIC 1) for each of the countries involved and accordingly increased U.S. agricultural exports by the entire amount. The U.S. concessions on cheese were treated as a relaxation of import quotas in the food, beverages, and tobacco sector (ISIC 310), and the total was allocated to the exports of other countries on the basis of their shares in the total value of U.S. cheese imports in 1976. The model was then solved under conditions of fixed and flexible exchange rates and caiculations made of the changes in the endogenous variables. For this purpose, tariffs were assumed to be unchanged at their post-Kennedy Round levels.

The detailed employment effects by ISIC sector and country are recorded in Appendix Tables D. 5 and E. 7 for fixed and flexible exchange rates, respectively. These effects as well as the changes in welfare

Estimated Increases in U.S. Agricultural Exports by Commodity and Country as a Result of NTB Reductions in the MTN (Millions of Dollars)

Country	Almonds	Beef	Canned Peaches 6 Fruit Cocktall	Citrus	Poultry	Rice	Soybeans 6 Products	Tobacco	Total
Australia								1.7	1.7
Austria		3.0							3.0
Canada									
European Community ${ }^{\text {a }}$		58.0			20.0	3.1			81.1
Belgium-Luxembourg		11.8			0.4	0.2			12.4
Denmark		0.3			0.1	-			0.4
France		24.3			0.2	0.1			24.6
Germany		0.9			12.2	1.1			14.2
Irel and		-			-	-			-
Italy		0.6			2.4	0.5			3.5
Netherlands		10.2			0.5	0.8			11.5
United Kingion		9.9			4.2	0.4			14.5
Finland									
Japan		112.9		36.0					148.9
New zealand					0.2				0.2
Norway					0.1				0.1
Sveden									
Switzerland		12.6				0.1			12.7
Rest of World	2.5	-	0.4	0.1		-	55.0	-	58.0
Total	2.5	186.5	0.4	36.1	20.3	3.2	55.0	1.7	305.7

${ }^{\text {a }}$ Total allocated to EC member countries on the basis of $1976 \mathrm{U} . \mathrm{S}$. exports. Source: Adapted from Schnittker Associates (1979).
are summarized in Table 22. The agricultural concessions are seen to result in a 42,000 worker increase in U.S. agriculture (ISIC 1) and 11,000 workers overall under conditions of flexible exchange rates. The reason for this difference is that workers will be attracted to agriculture and away from other sectors. Our estimated employment increase in agriculture, it may be noted, is in excess of the 26,000 workers increase estimated by Houck (1979, p. 64) in response to both the nontariff and tariff concessions.

It is also evident from Table 22 that Canada experiences a negligible decline in employment in agriculture and overall. In the EC and Japan, employment in agriculture declines by 15,000 and 18,000 workers, respectively, and 8,500 and 14,500 workers overall under conditions of flexible exchange rates.

The change in economic welfare noted in Table 22 has been calculated according to the method depicted in Appendix Figure B.1. The agricultural concessions will result in an estimated $\$ 231$ million increase in economic welfare in the U.S. under conditions of flexible exchange rates. The gains for the European Community are $\$ 73$ million and for Japan, \$31 million, while Canada experiences a small decline in welfare.

As should be clear from our analysis of the effects of the MTN tariff reductions, the model provides information on changes in many other endogenous variables such as export, import, and home prices by sector and effective exchange rates. These detailed results are not reproduced for the agricultural concessions in the report but are available from the authors upon request.

Table 22

Changes in Employment and Economic Welfare in the U.S. and Other Major Industrialized Countries Due to Agricultural Concessions in the MTN

Country	Fixed Exchange Rates	Flexible Exchange Rates
Change in agricultural employment (000 workers)		
Canada	-1.2	-1.1
European Community	-15.6	-14.9
Japan	-18.0	-17.6
U.S.	42.1	41.7
Total change in employment (000 workers)		
Canada	-1.2	-0.4
European Community	-13.2	-8.5
Japan	-18.1	-14.5
U.S.	16.4	11.0
Change in economic welfare (\$ mill.)		
Canada	-\$6.1	-\$6.5
European Community	59.5	73.3
Japan	22.1	30.9
U.S.	222.3	231.4
Other countries	2.8	4.9
Total	300.6	334.0

Source: Employment effects, Tables D. 5 and E. 7.

Even though the agricultural concessions obtained and granted by the U.S. in the MTN appear modest, they nonetheless will result in an improvement in the nation's welfare. As in the case of tariffs, this constitutes a permanent improvement. It is also evident that other countries will gain as well, although they may experience some adjustment costs in terms of declining employment in agriculture. We mentioned above the lack of information concerning other agricultural concessions aegotiated in the MIN. Presumably these concessions will result in still additional (though small) benefits to the countries involved. Finally, we should aertion the possible indirect benefits that may be derived particularly from the various codes on nontariff barriers in the MTN that are relevant to trade in agricultural products.

In conducting our analysis of the effects of the agricultural con--essions, we have assumed that tariffs remain at their post-Kennedy Round levels. This has enabled us to focus attention only on the agricultural concessions themselves. More realistically, allowance should be made for the changes in tariffs on agricultural products and also for those involVing industrial products, which will be introduced during the time that the quantitative restrictions on agricultural products are being relaxed. In Section ∇ below, we shall therefore present the results, based on our model, of the combined effects of the tariff changes and the liberalization of agricultural import restrictions. This subsequent analysis will also incorporate the liberalization of government procurement, to which we will now turn.

Government-procurement regulations embrace a variety of considerations involving the terns of soliciting bids, the requirements placed on bidders, the criteria for selecting bids and awarding contracts, and the extent to which contract terms are publicized. These matters are discussed in detail in Baldwin (1970, Ch. 3) and lie outside our present concern. The question is how one can measure the impact of changes in government procurement.

A possible procedure that has been followed by Baldwin (1970) and subsequently by Lowinger (1976) and Cline et al. (1978) is to calculate the difference between actual government imports and hypothetical governsent imports. The latter are estimated by applying nongovernment import propensities by sector to total government expenditures. The difference by sector between actual and hypothetical government imports is interpreted as a measure of government discrimination in favor of domestic producers. Summation across sectors then provides an indication of the overall discriminatory impact of government procurement.

Our concern was not to measure the overall impact of discrimination in government procurement, out rather what the impact would be of changes in existing levels of procurement discrimination. For this purpose, we relied on some informal and sketchy information on government procurement that the major negotiating countries in the MIN had made available to STR. This information was in the form of the total amount of nondefense procurement that countries had tentatively agreed to open to foreign suppliers for the purposes of bidding. The amounts are indicated in Table 23. While some detail was available by sector, it was unfortunately

Table 23

Estimated Amount of Liberalization of Non-Defense Government Procurement by the Major Industrialized Countries in the KMN (Billions of Dollars)

Country	Amount
Australla	\$ -
Austria	-
Canada	1.0
European Community ${ }^{\text {a }}$	10.0
Belgium-Luxembourg	0.5
Denmark	0.3
France	2.4
Germany	3.4
Ireland	-
Italy	1.3
Netherlands	0.6
United Ringdom	1.5
Finland ${ }^{\text {b }}$	0.6
Japan ${ }^{\text {c }}$	7.0
New Zealand	-
Nowway ${ }^{\text {b }}$	0.7
Sueden ${ }^{\text {b }}$	1.7
Switzerland	1.0
Onited States	11.0
Total	\$33.0

[^1]insufficient for our purposes. Although there has been some dispute between the U.S. and Japan concerning the adequacy of Japan's offer, we have assumed that this dispute will be settled in due course and all the procurement offers will therefore be made multilaterally.

As the first step in our analysis, we sought to obtain any readily available data on Government expenditures by sector from national input-output tables. We were able in this regard to obtain 1967 data for the U.S., 1970 data for France, Germany, Italy, Netherlands, and the United Kingdom, 1971 data for Canada, and 1970 data for Japan. Each country's input-output sectors were concorded with the ISIC breakdown used in our model, and the relative prcportions of government expendicures were calculated by sector and country. For those countries where input-output data were not readily accessible, we applied the average proportions for the eight countries noted. We assumed that the amount that each country had earmarked for procurement liberalization would be spent according to the expenditure proportions calculated, except for goverament purchases of agricultural food, and petroleum products which we assumed would not be affected.

The amounts of government imports by sector were determined on the basis of the nongovernmental import propensities calculated by our model. This assumes that government imports were zero initially. To the extent that this was in fact not the case, our procedure will overstate the effects of procurement liberalization. In any event, we then proceeded to solve the model on the basis of these estimated changes in government imports under conditions of fixed and flexible exchange rates, thus determining all of the changes in the endogenous variables and thereafter
calculating the changes in economic welfare. We assumed throughout that tariffs remained at their post-Kennedy Round levels and that no agricultural concessions had been made. This assumption will be relazed later when we analyze the entire MTN package.

The detailed employment effects of the procurement liberalization by ISIC sector and country are recorded in Tables D. 6 and E. 8 for fixed and flexible exchange rates, respectively. These effects together with changes in economic welfare are summarized in Table 24 . It is evident that, under flexible exchange rates, the employment effects are negligible overall, whereas, under fixed rates, the European Community has an overall increase of 23,000 workers and Japan an overall increase of 24,000 workers. These changes in employment are concentrated in the durable goods industries (ISIC 371 - 38A).

The change in economic welfare noted at the bottom of Table 24 has been calculated based upon the method depicted in Appendix Figure B. 2. Under flexible exchange rates, the U.S. experiences an estimated $\$ 616$ million increase in economic welfare, Canada, $\$ 359$ million, Japan, $\$ 286$ million, and the EC member countries combined, $\$ 1.9$ billion. Germany's welfare improvement alone was an estimated $\$ 697$ million. The total for all 18 countries was $\$ 4.4$ billion.

We mentioned above that our estimated effects of government-procurement liberalization are overstated in so far as we have assumed that government imports were zero initially. Unfortunately, we lacked systematic data on government imports so that we were not able to determine how important this overstatement was. But assuming that it was not too

Table 24
Changes in Employment and Econonic Welfare in the U.S. and Other Major Industrialized Countries Due to Liberalization of Government Procurement in the IIN

Country	Fixed Exchange Rates	Flexible Exchange Rates
Change in employment in durable goods sectors (ISIC 371-38A) (000 workers)		
Cauada	-5.5	-5.0
European Comunity	26.2	13.4
Japan	11.5	-1.1
U.S.	-3.4	-4. 5
Total change in employment in all sectors (000 workers)		
Canada	-4. 2	-2.7
European Community	23.2	3.2
Japan	24.3	1.9
U.S.	2.6	1.6
Change in economic welfare (\$ mill.)		
Canada	\$357.8	\$359.3
European Community	1,953.3	1,917.5
J apan	328.7	286.4
Norway	200.9	215.4
Sweden	470.0	508.9
Switzerland	387.6	411.3
O.S.	634.8	616.3
Other countries	119.7	125.2
Total	\$4,452.8	\$4,440.3

Source: Employment effects, Tables D. 6 and E. 8
large, our results suggest that multilateral procurement liberalization is likely to have comparatively small effects on employment in individual sectors and overall and significantly positive effects on econonic welfare. As stressed already in connection with tariffs and agricultural concessions, the gains in welfare would be permanent.

It bears repeating that, in our analysis of procurement liberalization, we have assumed that tariffs remained at their post-Kennedy Round levels and that agricultural concessions had not been made in the MTN. We shall have occasion in Section V below to analyze the combined effects of the MTN reductions in tariffs, agricultural concessions, and procurement liberalization.

Customs Valuation

In cases where it is difficult to determine the actual price or the transaction value of imported goods, it becomes necessary to estimate such price or value for purposes of levying import duties. This may in practice give considerable discretion to customs officials and, depending upon how their discretion is exercised, it could result in substantial increases in the base on which tariff rates are levied.

The issue of customs valuation has been troublesome both in the U.S. and in other countries. Foreign exporters to the U.S. have singled out in particular the so-called American Selling Price (ASP) method of valuation, which has required since 1922 that the tariff on benzenoid chemicals, rubber-soled footwear, canned clams, and certain knit gloves be levied on the value of similar products produced in the U.S. rather than on the price in the exporting country. If the proposed code on customs valuation is approved by Congress, the ASP
systen will be abolished. It is our understanding that the removal of ASP and thus the reduction of the implicit tariffs on the aforementioned goods were taken into account in determining the balance of concessions made by the U.S. and the other major countries as a result of the MTN. We have not attempted therefore to determine separately what the economic effects of ASP elimination would be. Rather, these effects will presumably have been captured already by our analysis of the tariff reductions that have been negotiated.

Negotiation of the code covering customs valuation should be beneficial to U.S. exporss to the extent that other countries zeduce or remove discretionary uplifts that have been applied for customs purposes in levying tariffs. The issue of customs valuation has been considered important enough that a number of U.S. firms and trade asscciations has formed a Joint Industry Working Group on Customs Valuation, under the direction of the Manager of Customs \& International Irade Affairs of The Proctor \& Gamble Company. In the hope that we could quantify the economic effects of the customs-valuation code, members of the Working Group were requested on our behalf to supply whatever infornation they might have on the percentage uplifts applied to U.S. exports. at the time of writing, we had received responses from only six U.S. companies and one trade association, all of which were involved primariiy in the export of pharmaceutical and chemical products. Since we could not determine how representative these responses were for other products, companies, sectors, and countries, we decided against using our model to calculate the possible effects of removing customs uplifts.

It may nevertheless be of interest to sumarize for the benefit of interested readers what little information was provided to us by the industry representatives. This information is summarized in Table 25. It can be seen

Table 25
Selected Exemples of Foreign Uplifte in Custom Valuation

Country	Product	Percentage Uplift
Industrialized Countries		
Austria	Selected pharnaceuticals	08
Caneda ${ }^{\text {a }}$	Selected pharmaceuticals	0
France	Selected pharmaceuticals	0
Germany	Selected pharameuticals	0
Italy	Selected pharaceuticals	6.0
	Selected pharaceuticals	5.0
	synthetic fibers	50.0
Japan ${ }^{\text {b }}$	Aatibiotics in bulk	5.7
	Cosmetic reo 6 packagiog merials	1.0
	Finished cosmetic products	7.0
	Fiaished dereatological products	7.0
	Nutritionala	4.0
	Other phereaceuticals	8.0
	"Practically all" pharenceuticals, fat va	ve 6.0
Netherlands	Selected pharenceuticals	0
Suitzerland	Selected pharasceuticals	0
United Kingdoa ${ }^{\text {c }}$	Most antiblotics (8TN 29.64)	17.5
	Erythromycan throcyanate (BTN 29.44)	126.0
	Erythrorycin ethyl succinate (ETN 29.44)	55.0
	Anti-coagulants (BTM 39.06)	17.5
	Disposable sets (BTM 90.17)	28.7
	Selected pharaceuticals	10.0
Rest of Horld		
Chile	Selected pharameuticals, fob value	4.5
Greece	Antibiotics	6.8
Indonesia	Many industries	d
Mexico	Selected pharnaceuticals	e
Spain ${ }^{\text {t }}$	All products	4.0
	Inter company transactions	4.0
	All imports from affiliated companies	11.0

[^2]that uplifts on selected pharmaceuticals ranged from zero in several Western European countries to as much as 126.0 per cent in one instance in the U.R. In order to fora some idea of the increase in tariffs implied by cuitoms liplifts and tne reductions that would result from the removal of uplifts, we present some illustrative calculations in Table 26. In column (1), we have recorded some percentage uplifts that are based on the information in Table 25. Column (2) refers to the weighted average, pre-MTN tariff on selected pharmaceuticals Eor each country shown and synthetic fibers for Italy only. Column (3) is the implicit tariff, including the uplift, calculated on the basis of unity plus the percentage uplift times the tariff rate in column (2). Column (4) is the weighted average, post-MTN tariff on the products noted. Column (5) is the percentage depth of cut in the tariff rate only, that is, the percentage difference between columns (2) and (4). Column (6) is the percentage depth of cut, based upon the difference between the post- and preMTN tarifi and assuming that the customs uplift is removed.
where the percentage uplift is relatively small, that is, in the $5-10$ per cent range, the implicit tariff inclusive of the uplift and the percentage cepth of cut excluding the upliEt are only marginally differert from the calculations based on the tariff rate only. Obviously when the uplift is 50 eer cent or more, the implicit tariff and the eifects of removing the uplift are appreciably greater. Unfortunately, we do not have enough detailed and systematic information by product and country to determine how pervasive and important customs uplifts may be. ${ }^{1}$ The illustrative calculations in Table 26 suggest nevertheless that there could be substantial reductions in implicit tariffs on particular products if uplifts were removed or reduced. This would certainly be beneficial to the U.S. exporters involved.

Table 26
Some Illustrative Caiculations of the Implicit Tariff Effects of Custom Uplifts on Cheaical Products

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Country \& Customs Uplift \& Tariff Rate \& \& \begin{tabular}{l}
Post-MTM \\
Tariff \\
Raze
\end{tabular} \& \[
\begin{gathered}
\text { Tariff Rate } \\
\text { Onlyb }
\end{gathered}
\] \& neage Cut \(\qquad\) With Removal of Custans Uplift \({ }^{\text {c }}\) \\
\hline \& (1) \& (2) \& (3) \& (4) \& (5) \& (6) \\
\hline \begin{tabular}{l}
Italy \\
Sel. pharmaceut. Synchetic fibers
\end{tabular} \& \[
\begin{gathered}
5.0 \% \\
50.0
\end{gathered}
\] \& \(\mathrm{Pa}_{12.0 \mathrm{~K}^{\text {d }}}{ }^{\text {d }}\) \& \[
\begin{gathered}
9.4 \pi \\
18.6
\end{gathered}
\] \& \[
\begin{aligned}
\& 5.9 x^{d} \\
\& 8.8^{e}
\end{aligned}
\] \& \[
\begin{aligned}
\& 34.42 \\
\& 29.0
\end{aligned}
\] \& \[
\begin{aligned}
\& 37.22 \\
\& 52.7
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Japan \\
Sel. pharmaceut. \\
Sel. pharaaceut.
\end{tabular} \& \(5.0 \%\)
10.0 \& 6.5
6.5 \& 6.8
7.2 \& \[
\begin{aligned}
\& 4.9^{d} \\
\& 4.9
\end{aligned}
\] \& 24.6
24.6 \& 27.9
31.9 \\
\hline \begin{tabular}{l}
United Ringdom \\
Sel. pharmaceut. \\
Sel. pharmaceut. \\
Sel. pharmaceut.
\end{tabular} \& 20.0
50.0
125.0 \& \(9.0{ }^{\text {d }}\)
9.0
9.0 \& 10.8
13.5
20.2 \& 5.9

5.9
5.9 \& 34.4
34.4
34.4 \& 45.4
56.3
70.8

\hline
\end{tabular}

${ }^{a}$ Calculated as [unity $\left.+(1)\right] \times$ (2).
${ }^{\mathrm{b}}$ Assumes reduction in tariff rate only: $[(2)-(4)]$ (2).
${ }^{c}$ Assumes reduction in tariff rate coupled with removal of custons uplift: [(3) - (4)] + (4).
deighted average nominal rate on BIN 29.44, 39.06, and 90.17.
eieigntid average nominal rate on BTN 5101-5104 and 5601-5607.

Other Nontariff Barriers

We mentioned earlier that several codes have been developed in the MTN to deal with a r., iety of nontariff barriers. Some of these codes will not have an immediate or clear impact on trade as a result of the M.N. This would appear to be the case, for example, for the codes involving safeguards and standards and technical regulations. The code involving sutsidies and countervailing duties could have some impact, though how much and with respect to which countries and sectors cannot be readily determined given the present state of knowledge. In addition to the codes, a series of comodity agreements on particular agricultural products nay emerge from the MIN. Without more details on what these agreements will contain in terms of their impact on prices, production, and trade, there is nothing that we can contribute to their likely effects, at least in terms of what our model san handle.

Footnote

${ }^{1}$ In this connection, one respondent replied:
"bhile I regret that our circular did not elicit information from a greater number of companies, the responses cited... seem sufficient to show that uplifting is a conmon practice in many countries. My contacts with our representatives... suggest that nearly all have encountered the problem of arbitrary valuations by foreign customs officials but may have become inured to the practice. ...|Llegitimate nies tions may occasionally arise about the valuation of...intracompany shipments (of multinational corporations), but the regularity of upward adjustments in some countries constitutes an unjustifiable barrier to trade."

Another respondent noted: "...as you can appreciate, we
are not particularly anxious to have specific examples involving our products brought to the attention of the countries in which these problems have arisen."

V. Combined Effects of Reducrions in Tariffs and Nontariff Barriers

In the two preceding sertions, we have analyzed separately the economic effects of mTN tariff reductions, agricultural concessions, and the liberalization of government procurement. We now propose to use our model to determine the combined effects of the foregoing changes in tariffs and nontariff barriers. The point of looking at these combined effects is that all of the changes noted will be made over the same time period, and it is important therefore to consider the interactions involved to the extent that our model permits. The results to be presented below are therefore our best estimates of the likely economic effects of the three major components of the entire MTN package. There may be additional effects from some of the other codes, commodity agreements, and aspects of the MTN that may change as time passes. But lacking any quantitative information on these matters, we cannot evaluate their economic significance at this time.

Also, in this section, we shall consider how sensitive the combined results may be to certain key parameters in the model. In this regard, we have run three separate experiments, which will be reported below. In the first experiment, we doubled all supply elasticities in order to determine how the results would be affected if production were made more responsive to price changes. The second experiment involved doubling all elasticities of substitution between imported and home goods. This will enable us to determine how the increased responsiveness of consumers and producers to relasive price changes will affect the results. The final experiment involved a combination of the two preceding ones, that is, we doubled both the elasticities of supply and substitution.

Economic Effects of the Combined Reductions in MTN Tariffs and NTB's

Since we have previously discussed our model and its solution procedure, we will not repeat these details since everything stated earlier applies here. What we did essentially was to introduce as exogenous changes in the model the MTN tariff reductions, agricultural concessions, and procurement liberalization. The model was then solved for the changes in the endogenous variables, and we also calculated the changes in economic welfare. Results were obtained for both the fixed and flexible exchange-rate versions of the model.

The effects on employment by ISIC sector and country under fixed exchange rates are recorded in Appendix Tables D.7-D.10. It can te seen from these tables that the combined effects of the MTN reductions in tariffs and NTB's will result in a deterioration of the U.S. balance of trade and an overall decline in employment of 28.1 thousand workers. Other countries that experienced a deterioration in their trade balance included: Canada, Finland, France, New Zealand, Norway, Sweden, Switzerland, and the U.R. The remaining countries experienced an improvement in their balance of trade.

All countries experienced an overall increase in employment except Canada, Norway, Sweden, Switzerland, and the U.S. For the combined EC, this increase amounted to 174.5 thousand workers and for Japan, 13.5 thousand workers. It is evident from Table D. 10 that, except for the small countries, the total employment changes were all substantially less than one per cent of the 1976 level of employment. For the U.S., the decline in employmrat was an estimated .03 per cent of total employ-
ment. Readers interested in details on the changes in trade and employment by sector and country should consult Tables D. 9 and D. 10.

We turn now to the combined effects of the MTN reductions in tariffs and NTB's under conditions of flexible exchange rates. The absolute and relative employment effects by sector and country are recorded in Tables 27 and 28. The effects on the U.S. are seen once again to be very small across sectors. There is an increase in employment overall of 15.0 thousand workers, which is a very small fraction (. 02 per cent) of total 1976 employment. The largest increases, inthousands of workers, are recorded for: agriculture (55.4), chemicals (3.7), iron and steel (1.1), nonelectrical machinery (7.3), and transport equipment (3.2). Negative employment effects are recorded for: food, beverages, and tobacco (-2.0), textiles (-1.3), wearing apparel (-5.2), nonmetallic minerals (-1.2), electrical machinery (-1.0), miscellaneous manufactures (-10.6), and Eor all the nontradable industries except mining and quarrying. These results evidently parallel closely the results noted earlier in Table 15 for tariff reductions alone.

The effects on the tradable industries in the other countries can be read irom the details in Tables 27 and 28 . Japan records employment increases, in thousands of workers, in: food, beverages, and tobacco (1.4), nonmetallic minerals (1.2), metal products (3.0), electrical machinery (5.8), transport equipment (3.3), and miscellaneous manufactures (1.6), and declines in agriculture (-14.9), textiles (-4.4), and nonelectrical machinery

TABLE 27

absolote chances in eaployagut order nexible exchange eates
 doe to tef combimeo efrects op reductions ill taripes

	1	310	321	322	323	324	331	332	341	342	354	358	355	361	362
164	-3. 335	0.442	-0.301	0.057	C.	0.114	-0.132	-0.214	0.000	0.086	0.212	-0.183	-0.55	0.101	0.015
454	0.1;8	0.357	2.511	1.641	0.149	0.523	0.299	0.302	0.535	0.102	-0.041	-0.055	-0.140	-0.029	0.006
こnd	1. 458	0.444	-0.500	0.772	0.229	0.424	1.420	-0.491	2.910	-1.819	0.165	0.300	-1.192	0.540	-0.129
EC	-13.250	16.686	34.843	21.251	0.463	2.453	-3.057	4.641	-6. 208	1.674	9.963	-0.880	3.792	1.321	1.988
31.4	J. 359	1.512	7.478	3.692	0.81 C	0.095	0.033	0.153	0.136	-0.102	4. 550	-0.690	0.355	-0.238	0.499
DEY	2.233	1.881	1.104	1.487	0.197	0.190	-0.047	0.729	-0.288	0.032	0.148	0.014	-0.061	0.016	0.051
FR	2.300	2.498	4.450	$3.4+8$	C.EE9	0.990	-0.787	-0.495	-1.111	0.089	0.463	0.259	1.768	-0.124	0.375
GFE	-9.508	4.468	0.535	1.200	-1.477	0.678	-0.632	1.367	-2.319	0.392	5.230	-0.317	-0.648	-0.798	0.481
LRE	1.156	0.432	0.840	0.546	0.072	0.059	0.001	0.015	-0.012	0.058	0.154	-0.017	0.053	0.107	0.019
$1 T$	-9. ${ }^{\text {d }}$ +	1.522	0.807	7.201	-0.615	-0.002	-0.389	2.710	-0.844	0.293	-3.462	-0.217	1.028	2.101	0.271
ML	1.331	2. 109	3.745	2.084	C. 176	0.15R	-0.696	-0.036	-0.603	0.041	2.477	-0.097	0.309	-0.695	0.063
UK	-2. 259	2.404	3.343	1.532	0.630	0.385	-0.541	0.198	-1.166	0.870	0.403	0.185	0.988	0.951	0.228
P18	$\therefore 232$	0.339	0.515	1.870	0.149	0.422	0.653	3.177	1.929	-0.004	-0.454	-0.042	-0.096	-0.084	0.093
JPM	-14.007	1.44.	-4.441	-0.380	-C.4E1	-0.244	0.180	-0.082	-0.214	0.117	-0.197	-0.688	0.641	1.197	0.094
12	J.318	0.239	0.413	0.130	0.045	-0.016	0.052	0.317	0.036	0.043	-0.098	0.002	0.067	-0.003	-0.003
UuE	1.5 ± 9	0.243	0.342	0.204	0.041	0.046	0.127	-0.335	0.717	-0.091	-0. ${ }^{26}$	0.116	-0.049	0.061	-0.002
3id	J. 7 t 3	-0.690	-0.301	0.143	-C.11C	0.102	0.912	0.213	1.801	-0.071	-1.025	-0.169	0.125	0.006	0.072
3*2	0.7 ± 1	0. 393	0.672	-0.310	-0.242	-0.055	-0.436	-0.355	-0.713	-0.091	1.663	-0.211	-0.272	-0.442	0.034
JS	53.35*	-1.971	-1.321	-5.221	0.746	0.158	-0.448	0.671	0.394	0.473	3.678	0.688	-0.154	-1.223	-0.022
POTAL	30.192	10.3)1	31.871	20.457	1.947	3.927	-0.432	4.845	1.180	0.420	13.742	-1.1i6	2.169	1.445	2.146

TAPLE 27 (CONT.)

	311	372	381	392	3f:	384	381	2	4	5	6	7	8	9	tot
124	0.031	0.432	0.175	0.021	$0.2<9$	-0.121	0.042	0.037	0.057	0.042	-0.164	0.018	0.018	-0.358	0.596
ATA	J.930	0.126	-2.541	2.236	0.540	0.422	2.551	-3.036	-0.158	0.196	-1.749	-0.305	-0.389	-2.59 1	6.650
C^D	-0. 361	U. 138	-2.557	0.926	-1.å	1.905	C. 478	1.270	-0.197	0.948	-1.249	-0.029	-0.001	-3.028	2.238
EC	4.532	-1.730	10.622	22.125	2c.ito	19.151	38. 335	-1.099	-1.482	-3.196	-22.0.0	-2.475	-3.589	-39.721	116.129
81.1	J. 382	U. 012	1.164	0.530	0.844	2.467	1. 158	-3.425	-0.120	-0.226	-2.991	-0.324	-0.494	-9.810	15.379
DEY	-0.125	0.012	J. 137	1.336	0.143	-0.758	1.046	0.302	-0.016	-0.103	-1.056	-0.240	-0.350	-2.539	5.778
FR	1.534	0.688	1.200	5.741	3.928	3.432	4.749	0.413	-0.210	-0.154	-3.624	-0.233	-0.450	-6.370	25.161
GPa	0.714	-3.699	4.075	6.250	9. 580	8.049	13.804	-1.607	-0.052	-1.107	-7. 355	-1.683	-1.643	-10.768	22.032
IRE	0.328	0. UBS	0.258	0.143	0.183	0.056	0.413	0.014	0.011	0.027	-3.220	0.683	0.030	-0.648	3.967
IT	J.9y5	-1.361	2.407	2. 361	2.608	3.241	3.888	-0.779	-0.232	-1.066	-2.522	-0.224	-0.953	-3.090	12.864
W	$-3.1 / 4$	0.677	-0.2A5	J.4JR	ग.6.64	1.107	2.445	-0.064	-3.091	0.047	-1.832	-0.208	-0. 132	-3.921	8.478
OR	0.929	0.226	1.620	4.569	3.525	1.595	10.172	1.758	-0.100	-3.636	-2.468	0.353	0.103	-7.575	22.470
FIV	J. 304	0.084	-0.016	0.692	$-\mathrm{C} .7 \leq 2$	-0.381	-0.160	-3.041	0.031	-0.013	-0.267	0.193	-0.029	-0.836	5.517
JPM	-0.763	0.503	2.950	-3.150	5.929	3.349	1.590	-0.656	0.017	-0.178	-1.644	-0.115	0.090	-1.520	-1 1.632
± 2	-u.j39	0.193	-0.0 ± 9	-0.03;	0.028	0.380	0.301	0.023	0.004	0.066	-0.075	0.056	0.019	-0.342	2.045
108	J. 525	U. 540̆	-0.211	-0.441	-C.4¢7	-0.252	0.379	0.323	-0.013	-0. 126	-0.538	0.071	-0.078	-1.094	1.529
j\#0	1.594	0.237	1.058	1.337	-0. 109	1.016	0.037	-0.249	0.028	-0.008	-0.564	0.155	-0.100	-1.674	5.440
3-2	-3.749	0.051	0.315	-6.195	0.373	-2.705	2.884	-1.848	-0.112	0.261	-0.604	-0.64 1	-0.661	-0.639	-9.755
JS	1. $) \rightarrow 0$	0.459	0.252	7.282	-0.9t ${ }^{\text {c }}$	3.198	-10.617	1.847	-0.848	-0.544	-14.055	-1.508	-5.056	-17.212	14.969
rotal	7.511	0.541	10.186	24.194	24.608	25.655	36.221	-0.419	-2.724	-2.544	-43.026	-4.591	-9.777	-69.014	133.725

table 28

 Ry ISIC sfCTOR IM the hajon indjstrialized coonteies dile to iff Coneimed efrects of reductions in taripis AMD MTBS IS THE MTV

	1	310	321	322	323	324	331	332	341	342	351	358	355	364	362
114	-0.351	0.119	-0.498	0.092	5. 5 C 1	1.009	-0.245	-0.795	0.000	0.116	0.365	-3.052	-2.911	0.228	0.177
ATA	J. 219	0.428	3.293	3.635	2.413	2.653	2.690	1.009	1.690	0.370	-0.077	-0.913	-1.098	-0.066	0.051
cad	J. 337	0. 167	-u.521	0.661	2.3 3	2.102	1. 166	-0.989	2.001	-1.774	0.174	1.497	-3.938	1. 152	-0.904
EC	-3.150	0.595	1.059	1.495	0.236	0.611	-0.452	0.868	-0.817	0.153	0.454	-0.319	0.769	0.116	0.518
BiI	J. 254	1.408	7. 154	6.496	3. 163	0.792	0.131	1.008	0.438	-0.230	5.282	-5.174	4.344	-0.837	1.563
DEY	1.028	1.477	4.484	7.093	8.021	5.370	-0.310	3.637	-2.147	0.088	0.509	0.435	-1.384	0.059	1. 354
7R	J. 127	0.372	1.354	1.286	1.444	1.090	-0.458	-0.482	-0.887	0.040	0.117	0.183	1.991	-0.063	0.505
GPa	-J.j+9	0.605	1.589	0.302	-3.2E7	1.052	-0. 322	1.164	-1.181	0.180	0.773	-0.886	-0.438	-0.280	0.467
18E	J. 470	0.795	4.006	4.0;0	3.277	1.611	0.038	0.372	-0.203	0.550	1.535	-0.898	2.558	1.193	0.562
1 T	-0. 322	0.305	1.148	1.999	-C.C31	-0.001	-0.390	1.999	-0.641	0.193	-0.719	-0.645	0.860	0.676	0.296
WL	0. 451	1.174	7.713	6.658	6.076	2.795	-1.910	-0.186	-2.062	0.052	3.277	-0.974	1.681	-2.196	0.628
UR	-0.342	0. 3:7	0.649	0.470	1.502	0.454	-0.425	0.165	-0.514	0.260	0.091	0.495	0.831	0.431	0.347
114	3.14.	0.473	1.874	5.367	4.403	6.946	1.686	1.699	3.472	-0.011	-1.848	-1.312	-1.717	-0.432	2.104
JPI	-3. 432	0.094	-0.375	-0.315	-C.841	-0.613	0.028	-0.037	-0.055	0.020	-0.033	-1.261	0.415	0.225	0.109
12	0.839	0.327	2.212	0.633	1.401	-0.262	0.291	0.274	0.340	0.225	-0.696	0.245	1.164	-0.036	-0.116
yor	J. y +0	0.465	0.298	1.797	2.752	2.206	0.519	-0.343	2.681	-0.218	-0.610	4.154	-1.373	0.494	-0.086
S*0	0.321	-0.102	-1.057	0.531	-3.440	2.441	1.281	1.076	2.627	-0.142	-2.218	-5.073	0.771	0.019	1.057
i*z	3.321	0.561	3.736	-0.032	-7.232	-0.475	-1.835	-2.757	-3.188	-0.168	1.848	-17.623	-4.417	-2.179	0.806
OS	1.530	-3.114	-0.112	$-0 .+19$	0.830	0.090	-0.024	0.167	0.059	0.044	0.339	0.390	-0.059	-0.279	-0.013
TOTAL	J. 175	0. 662	0.650	0.592	0.357	0.564	-0.020	0.765	0.054	0.013	0.321	-0.203	0.215	0.062	0.305

TARIE 28 （CONT．）

	371	37.	301	3×2	3 F	384	334	2	4	5	6	7	¢	9	102
Aid	J．Jo4	1．t＋1	$0.15 t$	－ 117	2． 16	－0．084	0.763	2． 048	0.008	0.009	－0．014	0.004	0.004	－0．028	0.010
ATA	1．Tue	0.616	－2．143	3.378	1． 189	$1.1+6$	7.029	－3．155	－0．479	0.077	－0．362	－0．155	－0．296	－0．443	0.226
こッ0	－0．393	U．314	－1．60t	0.633	－0．fen	1.019	0.600	J．970	－0．176	0.148	－0．078	－0．004	－0．000	－0．092	0.023
cC	J．${ }^{\text {d }} 1$	－J． 413	J．471	$\therefore .042$	O．tis	0.574	2.378	－0．096	－0．133	－0．039	－0．139	－0．040	－0．059	－0．176	0.115
ELA	J． 34	0． 3.3	1.019	1．05\％	1.845	3.753	3.179	－1．125	－0．334	－0．071	－0．418	－0．116	－0．205	－0．493	0.398
DEU	－1．；10	J．sat	こ．3s4	1． 379	0.172	－1．651	5.003	0．0¢8	－0．506	－0．053	－0．299	－0．144	－0．235	－0．338	0.241
P8	J．0ご	U．1；	\therefore C．a	1．19N	C．tcs	0.494	1.525	0.243	－0．119	－0．008	－0．103	－0．020	－0．036	－0．135	0.121
GPR	J．120	-3.742	3．60，	3． 370	J．「こ4	0.943	3.376	－3．434	－0．284	－0．057	－0．207	－0．113	－0．122	－0．201	0.090
IRE	J． 61	＋． $7+2$	3．its	2． 32	1．7t	0.416	3.321	0.143	0.079	0.036	－0．118	0.129	0.107	－0．300	0.389
15	J．［3）	－1．3r）	C．0．4	－3．4el	c．：	0.430	1.216	－3．239	－0．034	－0．061	－0．096	－0．020	－0．070	－0．128	0.068
NL	－3．234	3． 15	－3．920	0.612	3.769	1.374	4.145	－3．903	－0． 202	0.011	－0．225	－0．067	－0．043	－0．305	0.187
jK	v．237	\therefore－．ve	6．317	J． $5,2{ }^{\text {c }}$	0.459	9.173	2． 589	1.305	－0．031	－0．037	－0．06J	0.023	0.029	－0．110	0.092
P1：	U．J．s	1． $3+6$	－ 0.045	0.124	－2．410	－0．771	－1．315	－7．459	0.109	－0．008	－0．084	0.113	－0．025	－0．165	0.257
JP\％	－ 0.118	0.272	0．249	-2.253	0.394	0.274	0.192	－7． 364	0.005	－0．004	－0．014	－0．003	0.005	－0．014	－0．022
12	－ 0.275	5.913	－0．396	$-0.25 .4$	0． 157	0.438	2.617	2．456	0.024	0.071	－0．039	0.050	0.024	－0．127	0.169
102	S． 157	4.922	－0．722	－1． 562	－1．932	－0．441	2.410	2.933	－0．06d	－0．085	－0．182	0.044	－0．095	－0．224	0.085
S＊0	2.544	1.484	1.015	$0.9+1$	－0．113	0.591	0.109	-1.186	0.030	－0．003	－0．095	0.056	－0．041	－0．131	0.133
S ${ }^{\text {d }}$	－4．631	J．$\times \pm 8$	0.432	－4．729	0.314	－20．363	2． 489	－3． 105	－0．185	0.133	－0．177	－0．255	－0．239	－0．131	－0．346
US	J． 118	0.045	0.119	0.321	$-) . C \leq 3$	0.179	－0．825	0.236	－0． 115	－0．015	－0．068	－0．042	－0．066	－0．06 1	0.017
TJIAL	0．208	0.083	0.136	3． 312	0.340	0.367	0.874	－0．316	－0．106	－0．013	－0．081	－0．030	－0．056	－0．099	0.049

(-3.1). West Jermany has employment increases in: food, beverages, and tobacco (4.5), textiles and wearing apparel (7.7), furniture (1.4), chemicals (5.2), and meral prociucts, machinery, rransport equipment, and miscellaneous manuiactures (42.2), and declines in agriculrure (-9.6), leather (-1.5), paper and paper products (-2.3), and nonferrous metals (-0.9). Canada has employment increases in: agriculture (1.9), wood products (1.4), paper and paper products (2.9), nonelectrical machinery (0.9), and transport equipment (1.9), and a decline especially in metal products (-2.6).

As we have noted already in our earlier discussion, individual countries will vary in terms of the particular tradable industries that will experience employment increases or declines as the result of the MTN reductions in tariffs and NTB's. It is again evident that the nontradable industries will be adversely affected because of the switch towards the tradable industries where relative prices are lowered because of the MTN reductions. It is also clear that the absolute and percentage employment effects are comparatively small in most instances in the U.S., except in agriculture where there is an increase of 1.7 per cent in employment. The largest percentage declines are 0.4 per cent in wearing apparel and 0.8 per cent in miscellaneous manufactures. Ail of the changes in Japan are again comparatively small, but there are numerous instances especially in the smaller countries where the implied percentage crianges (both positive and negative) are substantially greater than 1 per cent. Sut even in these cases, the phasing of the MTN reductions will minimize any unusual difficulties in adjustment in the short run.

Let us now consider the effects on prices. The detailed results by sector are recoraed in Appendix Tables E. 9 - E. 12 for changes in export
prices, import prices, home prices, and an index of import and home prices. The overall effects by country are summarized in Table 29 . The overall percentage changes in export prices by country are all less than per cent. The percentage changes in import prices are all negative and in several instances substantially in excess of one per cent. The percentage changes in home prices are also all negative and fairly small, as is the case for the index of import and home prices. The decline in this index is an estimated seven une-hundredths of one per cent for the U.S., but is more significantly negative for several other countries.

The percentage exchange-rate effects are listed in the last colum of Table 29. As mentioned earlier, these are measured as changes in effective exchange rites. They are all a fraction of one per cent. The rate for the U.S. shows a depreciation of two-tenths of one per cent. The detailed changes in exports and imports by ISIC sector and country are recorded in Appendix Tables E. 13 and E.14. These changes in trade are what is required in the model to restore each country's trade balance to its initial level.

Let us consider finally the effects on economic welfare of the MTV reductions in tariffs and NTB's. The results are presented in Table 30 . The Eirst solum corresponds to the method of calculation depicted in figure B. 1 and the second to Figure B.2. The difference between them reflects the importance of shifts in the demand function for imports due especially to the liberalization of govemment procurement. It should also be recalled that our weifare calculation of procurement liberalization had an upward bias because we had not made any allowance, because of data limitations, Sor actual government imports. Ia this respect therefore, the calculations in Tajle 30 based on the second method will also be overstated.
rable 29

maje ImDOSTELALI2ED COOMREIES LOZ IC faz COHBIMED EFPECTS OR

COOMTEX	$\begin{aligned} & \text { EXPORT } \\ & \text { PEICES } \end{aligned}$	$\begin{aligned} & \text { IAPORI } \\ & \text { PEICES } \end{aligned}$	PCAE prices	IMDEE OF IAPORT AID HOAE PRICES*	GPPBCTIVE EXCHAVGE RATE
AUSTEALIA	0.16	-0.88	-0.05	-0.07	0.06
AUSTEIA	0.08	-2.14	-C. 50	-0.74	0.14
cayada	0.33	-1.56	-C. 95	-0.28	0.04
EU^OPEAY COBAOMITY	0.16	-1.59	-0. 39	-0.39	
BELCIJA-LOXEAB00 EG	-0.38	-2. 33	-3. 56	-0.99	0.51
DEEAARE	0.21	-1.79	-0. 73	-0.57	0.07
Prance	0.28	-1.42	-0.22	-0. 30	-0. 19
Grasaily	0.06	-1.79	-C. 38	-0.53	0.07
IRELAED	-0. 10	-2. 19	-0. 35	-0.53	0.26
ITALE	0.24	-1.33	-0.20	-0.26	-0.05
Mataralayds	-0.21	-1.96	-C. 60	-0.71	0.28
onited mixgoon	0.29	-1.47	-0. 15	-0.22	-0. 13
FIELAYD	0.67	-0.87	-0. 27	-0.23	-0.26
JAPAL	0.13	-1.01	-C.C6	-0.08	0.20
リEU ZEALAMD	0.26	-0.73	-0.09	-0.14	-0.01
MORUAI	0.89	-0.09	-0.80	-0. 10	-0.55
SuEder	0.48	-0.46	-C. 90	-0.33	-0.22
SHITzerland	0.31	-0.31	-7. 78	-0.37	-0.08
OMITED STAEES	0.80	-0.97	-C. 05	-0.07	-0.20
ALL SOUHTEIES	0.43	-1.21	-C. 27	-0.20	

-ayerage for all isic sectors, yeigrter by valoe or piodoction.

TABLE 30
CHAMGES IM EZOYOAIC UELFARE IM TAE GAJOE IMLOSTEIALIZED CODITAIES DOE TO TAE

counter	CHAMGE IM eCOMOAIE IELFARZ (BILL. \$)		GROSS DOR ESTICPRODOCT	
	aETEOD	aryact 2	AEPHOD	AETHOD 2
LUSTEALIA	7.2	13.2	0.01	0.01
AUSTEIA	52.6	25.7	0.14	0.07
cavada	286.6	608.9	0.17	0.35
EUROPEAy COsaunity	1648.8	3377.3	0.13	0.26
BELGIUA-LOXEABOORG	178.1	533.4	0.27	0.80
denalem	27.1	119.3	0.07	0.32
frayce	313.2	603.8	0.10	0.19
greanys	97.8	665.1	0.02	0.15
IRELAED	42.5	41.2	0.53	0.52
LTALI	201.6	327.7	0.12	0.20
Metherlaids	268.9	474.1	0.32	0.57
OMITED KIMGDOA	519.5	612.9	0.27	0.31
TIILIVD	40.7	165.9	0.16	0.65
J AP AIL	157.0	357.7	0.03	0.07
Men zealayd	22.4	15.6	0.19	0.14
MORGAI	38.1	251.3	0.13	0.88
Surder	71.2	551.2	0.11	0.84
SHITZERLAYD	-2.4	372.1	-0.00	0.67
duIted sfates	1001.1	1462.0	0.06	0.09
ALL COOSTEIES	3323.2	7200.5	0.08	0.18

It is evident from Table 30 that the absolute welfare gain for the O.S. is between $\$ 1.0$ and $\$ 1.5$ billion, which, in relative terms, is equal to between . 06 and .09 per cent of gross domestic product in 1976. The absolute welfare gain for the European Community is between $\$ 1.6$ and $\$ 3.4$ billion, which is between .13 and .26 per cent of GDP for the combined EC. Canada's gain is between $\$ 287$ and $\$ 609$ million, which is .17 to .35 per cent of GDP. Japan's gain is between $\$ 157$ and $\$ 358$ million, which, as noted previously, may reflect our use of prevailing tariff rates that already included unilateral reductions prior to the MTN. The total welfare gain for all 18 countries combined is between $\$ 3.3$ and $\$ 7.2$ billion, which is betwean .08 and .18 per cent of combined GDP. Our earlier conclusion about the positive welfare benefits to be derived from each change separately is thus reinforced by the combined effects of the chang-s in tariffs and NTB's.

In conclusion, it may be useful to summarize our major results for each change separately and the combined effects. This is done in Table 31, which presents the overall employment, welfare, and price effects for each of the major countries and the EC combined. It can be seen that the tariff reductions dominate the employment and price-index results, while both the tariff reductions and procurement liberalization contribute substantially to the increase in ecoromic welfare. This summary in Table 31 is the net result of all the detailed changes that occur in the individual tradatle and nontradable indu:stries. The reader interested in these detailed changes is referred to the relevant tables in the text above and in the appendices.
 II fas afi oide compirices of fiexime micmige layes

coumex	$\begin{aligned} & \text { eaplos } \\ & \text { tarifts } \end{aligned}$	$\begin{aligned} & \text { tagrt } \\ & \text { as } \mathrm{CJ} \end{aligned}$	$\begin{array}{cc} 000 \\ c o s \\ \text { COI } \end{array}$	ans)	$\begin{aligned} & \text { ECOHOI } \\ & \text { teiffs } \\ & \text { EETEI } \end{aligned}$		as (18 GOI PI Ext 2) EED 1512 2	$\begin{aligned} & \text { IGE PR } \\ & \text { ABD } \\ & \text { TARITRS } \end{aligned}$	ICE IHD HOLE GCOD 16 Coll	$\begin{aligned} & 128 \text { of } 1 \\ & 0005 \text { (} \\ & \text { cot pi } \end{aligned}$	apoers cons.
austalla	0.9	-0.1	-0.2	0.6	23	-6	-7	7	13	- 0.07	-0.00	0.00	-a. 07
anstaia	6.6	0.3	-0.3	6.7	52	2	-1	53	26	-0.73	$-i .01$	0.00	-0. 74
Canada	5.3	-0.4	-2.7	22	294	-6	359	287	609	-0.29	-0.00	0.01	-0. 28
cororeal conainity	121.4	-8.5	3.2	116.1	1360	73	1917	1649	3377	-0.37	-0.01	0.00	-0.39
BELGIOM-LOEEABOORG	15.0	0.1	0.3	15.4	854	7	310	178	533	-0.98	-0.03	0.02	-0.99
deysare	5.6	-0.1	0.3	5.8	30	-1	106	27	119	-0.62	-0.01	0.06	-0. 57
pramez	24.5	-2.8	3.4	25.2	279	5	326	313	604	-0. 30	-0.01	0.01	-0. 30
gerainy	22.2	-1.8	1.6	22.0	-58	26	697	98	665	-0.50	-0.01	-0.01	$-0_{0} 53$
Iestayd	4.8	-0.5	-0.3	4.0	14	-1	0	43	41	-0.52	-0.01	-0.00	-0. 53
1TALI	18.7	-3.7	-2.2	12.9	178	11	145	202	328	-0.25	-0.01	-0.00	-0. 26
Methemlazds	9.9	0.0	-1.4	8.5	257	2	184	269	474	-0.69	-0.03	0.00	-0.71
united kingdoa	20.8	0.2	1.4	225	476	23	151	519	613	-0.20	-0.01	-0.00	-0. 22
FInlayd	2.8	0.8	1.9	5.5	32	2	135	41	165	-0.31	0.02	0.06	-0. 23
JAPAI	1.0	-14.5	1.9	-11.6	47	31	286	157	358	-0.05	-0.02	0.00	-0.08
MEV 2EALAMD	2.0	0.2	-0.1	2.0	25	0	-1	22	16	-0.15	0.00	0.00	-0. 14
yozyay	2.0	0.2	-0.8	1.5	52	1	215	38	251	-0.22	0.00	0.12	-0. 10
Surdsi	3.0	-0.2	2.6	5.4	33	3	509	71	551	-0. 32	-0.01	-0.00	-0.33
SHITzERLAUD	-0.6	-0.0	-9. 2	-9.8	-36	2	411	-2	372	-0.27	-0.02	-0.08	-0. 37
giltid stares	2.3	11.0	1.6	15.0	710	231	616	1001	1462	-0.06	-0.01	0.00	-0. 07
ALL COUMTEIES	146.8	-11.2	-1.9	133.7	2592	334	4440	3323	7201	-0.18	-0.01	0.00	-0.20

[^3]The question naturally arises as to how sensitive our results may be to certain key parameters in the model. In order to test for sensitivity, we ran three separate experiments. We first doubled all supply elasticities, then doubled all elasticities of substitution between home and imported goods (with the original supply elasticities unchanged), and finally doubled both supply and substitution elasticities. For each of these cases, we considered the combined effects of the MTN tariff reductions, agricultural concessions, and liberalization of government procurement that were analyzed in the immediately preceding discussion. The results are compared for the overall employment and welfare changes for the major countries in Table 32.

Doubling the supply elasticities has the effect of enlarging the overall employment increases for the European Community and the U.S. and making Japan's negative employment greater. The additional supply responses thus appear to generate larger net changes in total employment, but the effects are clearly comparatively small. The welfare effects based on method 1 are reduced somewhat with the higher supply elasticities, but these effects move In both directions using method 2 . On the whole, the welfare effects do not appear unusually sensitive to the increased supply elasticities.

Doubling the elasticities of substitution between imported and home goods has a negligible effect on the overall net changes in employment and on economic welfare using method 1 . However, the welfare effects based on method 2 appear to be rather sensitive to the doubling of the substitution elasticities. Since method 2 is premised on the idea of a shift in the

Tabie 32
Sensitivity of Employment and ielfare Effects of the Combined Reductions in Tartffs and STB's in the MTN to Doubling of Supply and Substitution Elasticities

| | | Effects of |
| :---: | :---: | :---: | :---: | :---: |
| Effects | Doubling | Doubling Doubling both |
| With Given | Supply | Substitution Sapply and Substi- |
| Elasticities Elasticitses Elasticities tution Elasticities | | |

Total employment (000 workers)

Canaga	2.2	3.5	1.3	2.4
European Community	116.1	164.4	114.1	151.1
Japan	-11.6	-24.4	-8.7	-23.1
U.S.	15.0	34.8	10.1	34.1

Economic welfare - method 1
(mill. of dollars)

Canada	286.6	300.4	319.6	340.1
European Community	1648.8	1597.5	1836.1	1855.3
Japan	157.0	81.8	187.9	119.2
U.S.	1001.1	847.1	1087.9	960.0

Economic welfare - method 2
(낀. of dollars)

Canada	608.9	645.4	775.2	898.1
European Community	3377.3	3641.2	5135.1	6012.8
Japan	357.7	282.8	518.9	460.2
U.S.	1462.0	1339.5	2189.5	2325.4

demand function (see Figure B. 2), the higher substitution elasticities imply a shift of a more elastic schedule and thus a greater welfare effect.

Finaily, the effects of doubling both the elasticities of supply and substitution can be seen by comparing the first and last columns in Table 32. The effects on overall net employment are comparatively minor, as are the effects on economic welfare using method 1 . Doubling the elasticities further increases the calculation of economic welfare based on method 2 , ostensibly because both the supply and demand schedules become more elastic and the quantity changes larger.

It should be pointed out that the elasticities of supply and substitution used in our medel have been derived from empirical data. The supply elasticities for each sector are based on the elasticity of substitution between capital and labor, labor's share of value added from the 1967 U.S. input-output table, and value added as a fraction of total production. The elasticities of substitution for each sector are based on import shares of total consumption and elasticities of import demand. The elasticities used in the modei are thus reasonably firmly grounded on realistic data, and our confidence in the model is enhanced by the comparative stability of the overall employment eifects even with sizable parameter changes. By the same toiken, our welfare calculations have more of an ad hoc quality to them since they are not derived in a rigorous theoretical manner from the model itself. It is nevertheless noteworthy that the calculations based on method 1 , which assumes given demand and supply functions and is most appropriate for changes in tariffs and agricultural and other quotas, yields fairly stable results. The same cannot be said, however, for the welfare calculations based on method 2 , which assumes an implicit shift in demand.

We do not have as much confidence in this second calculation therefore as in the first. This is aside from the fact that the second welfare calculation is in any event an overestimate of the procurement-liberalization effect because data on government imports were not available.

VI. Effects on the Rest of World

As mentioned above, the rest of world is included as an aggregate to close the model. We do not attempt accordingly to treat any rest-of-world countries or regions explicitly. The rest of world is assumed to respond on tine supply side nevertheless as world prices change in particular sectors as a result of reductions in tariffs and NTB's, and there will be further supply responses as exchange rates adjust in the model to restore the initial tradebalance positions in each of the 18 induatrialized countries.

In the current version of the model, the rest-of-world trade ialance is held constant under conditions of both fixed and flexible exchange rates. Under fixed rates, it is assumed that rest-of-world imports are subject to rigid restriction in the form of import licenses, which are adjusted in proportion to initial imports so as just to exhaust available foreign exchange. Under flexible rates, we assumed a rest-of-world excess demand function for each tradable industry, depending on the world price in that industry and a rest-of-world exchange rate. The latter was then assumed to adjust to hold the rest-of-world trade balance constant.

The thrust of the foregoing assumptions is that the rest-of-world's net contribution to all world markets together is held constant and the influence of the rest of world on the aggregate performance of the 18 industrialized countries is of negligible importance. But at the level of an individual industry, the presence of the rest of world can be a significant factor for world markets. Thus, the assumed constancy of the rest-of-world trade balance by no means prevents rest-of-world exports, say, from expanding in one sector while contracting in another.

One of the major concerns in the Kennedy Round and earlier GATT negotiations was that tariff reductions were concentrated primarily on industrial products of export interest to the major industrialized countries that were the chief parties in the negotiations. This implies that the tariff rates in the industrialized countries are lower on industrial products traded among themselves and higher on products of the rest-of-world. Also, it means that tariffs have been changed differentially between the industrialized countries and the rest of world. We shall investigate this matter with respect to the MTN tariff reductions in what follows, and thereafter examine some of the effects that the reductions in tariffs and NTB's may have on the rest of world.

Industrial-Country Tariffs on Rest-of-World Imports

To provide some indication of the tariff levels of the industrial countires vis-a-vis the rest of world, we weighted the post-Kennedy Round tariff rates on industrial products, the MTN offer rates, and the percentage depth of cuts for each of the 18 countries by total imports (excluding petroleum) from the other industrializfd countries and from the rest of world, respective1y. The results are giver. in Appendix Tables C.9-C.14. A comparison of the weighted average tariffs and depths of cut for the individual countries is presented in Table 33. It is especially noteworthy that post-Kennedy Round average tariffs on industrial products tended to be lower for the European Communits and Japan when weighted by own-country imports from rest-of-world than by imports from other industrialized countries. The opposite was the case for Canada and the U.S. Of course, these results reflect differences in the compositions of imports from the two types of supplying countries. But, in any event, if does not bear out the contention that the rest-of-world faces overall tariffs on industrial products that are higher than what industrial countries

TABLE 33
HEIGHTED AVERAGE TARIPFS OU IMDOSTRIAI PRCEOCTS ABD DEPTE OF COT
BI THE EAJOR IIDOSTEIALIED COOMIEIES I甘 TEE MY:
UEIGETED BI TOTAL (EXCLODIEG PEIRCLEDE) IAPORTS PROA
OIHER IYDOSIRIALIZED COOMTEIES (OIC) ABI REST OP MORLD (EOU)

COUATEY	AVERAGE POST-REMEEDT ROOMD TABIFP		AVBRAGB EII OREER EATE TARIPF		$\begin{aligned} & \text { AVERAGE } \\ & \text { PERCBITAGE } \\ & \text { DEPTA OP COE } \end{aligned}$	
	OIC	108	CIC	801	OIC	208
AOSTRALIA	15.98	16.68	15.58	16.38	2.78	1.98
AUSTEIA	15.9	10. 6	12.4	9.0	22.1	149
cayada	6.8	12.3	4.7	10.1	30.9	18.5

EUROPEAV COAMOYITY

BELGIUA-LOXEABOURG	8.7	3.3	6.2	2.4	28.5	26. 9
DEyAARE	8.9	9.8	6. 5	7.2	26. 2	26. 1
prames	8.8	5.7	E. 3	4.2	27.8	26.6
GEPAAEI	9.0	7.4	6.4	5.5	28. 2	26.4
IRELAID ${ }^{\text {- }}$	9.5	7.6	7.0	5.5	26.3	28.3
ITALI	8. 0	4.5	E. 8	3.2	26.7	28.8
yethealamds	9.3	7.4	6.8	5.5	27.2	25.3
OULEED KIMGDOM	7.7	5.2	5.5	3.8	28.0	27.9
PIELAMD	9.8	8.0	7.3	6.4	26.2	20.2
JAPAM	4.5	3.1	3.0	2.7	32.8	11.7
YEU 2BALAYD	19.2	121	16.9	11. 4	12.3	5. 4
MOR4i	6.9	6.5	5.1	5.6	25.5	14.3
SUEDEM	6.4	6.5	4.9	5.6	24.4	12. 8
SUITzRELAND	3.9	4.0	3.1	3.1	21.2	23.8
OMITED STATES	5.4	8.4	3.4	5.8	37.2	31.2
ALL COUMTELBS	7.9	6.7	5.8	5.0	27.2	24.8

themselves face. The same holds true for the weighted-average MTN offer rates indicated in the third and fourth columns.

It can be seen in the last two columns of Table 33 that the weighted percentage depth of cut by the U.S. and the European Commnity was roughly the same based upon imports from the other industrialized countries and rest of world. This was not the case for Austria, Canada, Finland, Japan, New Zealand, Norway, and Sweden, where the depth of cut was somewnat greater when weighted by imports from the other industrialized countries. The evidence is thus mixed on whether weighted-average tariffs on industrial products are being reduced systematically more for the industrialized countries than the rest of world. There may of course be differences in rates by sector that are important. It also should be noted that there may be substantial nontariff barriers on both industrial and primary products of interest to the rest of world. The reader interested in such comparisons is referred to Apperix Tables C. 7 and C. 9 - C.14.

Changes in Net Exports by Sector of Rest of World

We present in Table 34 the changes in net exports by sector for the rest of world as a consequence of the reductions in tariffs in the MTN and the combined effects of the reductions in tariffs, the agricultural concessions, and the liberalization of government procurement. For the tariff reductions only, there are declines in textiles, leather and leather products, footwear, paper and paper products, products of petroleum and coal, nonferrous metals, and nonelectrical machinery. Some of these sectors are of course subject to varying amounts of quantitative restrictions in the industrialized

Table 34

Changes in Net Exports of Rest of World in Response to Reductions in Tariffs in the MIM and the Combined Reductions in Tariffs and NTB's
 (Millions of Dollars)

ISIC	Industry	Tariff Reductions Ooly	$\begin{gathered} \text { Combined } \\ \text { Reductioas in } \\ \text { Tariffs and NTB's } \end{gathered}$
1	Agriculture, forestry, \& Eishing	\$ 76.6	\$ 44.1
310	Pood, beverages, and tobacco	23.7	-29.0
321	Textiles	-77.3	-67.8
322	Wearing apparel	15.1	15.8
323	Leather and leather products	-20.7	0.6
324	Pootwear	-51.5	-55.3
331	Wood and wood products	16.9	25.2
332	Furniture	14.0	16.7
341	Paper and paper products	-4.4	-3.9
342	Printing and publishing	2.4	4.4
35A	Chemicals	43.1	55.7
358	Products of Petroleus and coal	-176.1	-81.9
355	Rubber products	31.5	43.8
36A	Nometallic mineral products	21.4	28.0
362	Glass and glass products	3.6	3.2
371	Iron and steel	-0.5	3.5
372	Nonferrous metals	-33.1	-31.1
381	Metal products	25.9	29.3
382	Nonelectrical machinery	-4.2	7.6
383	Electrical machinery	52.0	90.8
384	Transport equipment	8.6	21.8
384	Miscellaneous manufactures	123.0	184.9

ccuntries. Thus, even though tariffs may de reduced in these industries, trade will not respond to the extent that the quantitative restrictions are binding.

The single largest increase in net exports of the rest of world is in miscellaneous manufactures. There are also positive effects on rest-of-world net exports in agriculture and food products, wearing apparel, wood products and furniture, chemicals, rubber products, nonmetallic mineral products, metal products, electrical machinery, and transport equipment.

The combined reductions in tariffs and NTB's in the second column of Table 34 produce similar effects on rest-of-world net exports as tariff reductions alone. The main difference is that net exports of food, beverages, and tobacco become negative and net exports of leather and leather products, iron and steel, and nonelectrical machinery become positive. There are substantial increases in the net exports of wood products and furniture, chemicals, rubber products, nonmetallic mineral products, electrical machinery, 5 ransport equipment, and niscellaneous manufactures.

The effects on individual countries and regions in the rest ci world will thus depend on which of their tradable industries are most affected by the reductions in tariffs and NTB's in the major industrialized countries. If information were readily available, it might also be possible to determine how rest-of-world countries and regions would respond on the demand side as theirexports and foreign-exchange earnings changed. Finally, if we had information on domestic production and employment, including input-output relationships,
and on tariffs and NTB's, we could deternine how employment and prices would change in sidividual countries fust as we have done for the industrialized countries. Unfortunately, our model is not capable in its present form of providing this type of detail for the effects on the rest of world. The best we can do is to identify which sectors will be affected positively or negati-- vely for the rest of world in the aggregate, as in Table 34.

The Tokyo Round of Multilateral Trade Negotiations (MTN) has resulted in agreements to reduce tariffs significantly, to eliminate or reduce the scope of a number of nontariff barriers, and to aiter or formalize certain codes of international economic behavior ia ways that should help to liberalize trade even further in the future. Our study has attempted, as far as possible, to quantify all but the last of these aspects of the negotiations. In particular, we have estimated the effects on employment, prices, exchange rates, and welfare both of the negotiated tariff reductions and of those changes in nontariff barriers that we were able to quantify. The results, by and large, agree with earlier studies which have found the effects of trade liberalization to be beneficial but rather small. In particular, it is unlikely that implementation of the negotiated changes will cause significant dislocation in labor narkets, especially in the U.S.

Part of our study has sought merely to describe the barriers to trade and the changes in them that have been negotiated in the MTN. But our primary purpose has been to obtain quantitative estimates of the effects of these changes, especially as they pertain to levels of employment within the various industries and countries that will be affected by the negotiations. To this end we have updated and then applied a large computational model of world production and trade that we have developed and used for other purposes in recent years at the University of Michigan. The model includes explicit markets for 22 tradable and 7 nontradable industries, which together provide exhaustive coverage of world production. These markets are cleared both nationally, for each of the 18 major industrialized countries, and internationally, to capture trade among these countries and between them and the rest of
the world. Exchange rates are aiso included in the model and may be either held fixed or allowed to vary to clear markets for foreign exchange. Once a given set of changes in, say, tariffs or nontariff barriers is plugged into the model, it can be solved for the resulting changes in output, prices, trade and employment for each of the 29 industries and 18 countries. Exchange-rate changes for each country are also calculated, as is a rather ad hoc measure of economic welfare.

We applied the model first to the tariff changes that have been negotiated in the MTN. These changes, which were made available to us by the Office of the U.S. Special Trade Representative, show an average depth of cut on industrial products of about 26 per cent. Most of the countries participating in the MIN agreed to use some variant of the Swiss formula as the starting point for negotiating. In the end, the tariff cuts offered by the United States show a depth of cut that is fairly close to what would have been obtained under the Swiss formula. All other countries, however, offered noticeably smaller average cuts than they would have using the formula. As a result, the negotiated tariff cuts are somewhat larger for the U.S. than for such important trading entities as the European Community and Japan.

Given these differences in the negotiated tariff cuts, our model suggests, under fixed exchange rates, a deterioration in the U.S. balance of trade and a small absolute decline in employment as a result of the tariff suts. However, this decline in employment amounts to only .05 per cent of the U.S. labor force, and indeed the decline becomes an increase when we allow the exchange rate to adjust. Under flexible exchange rates, then, the results of our model suggest that the negotiated tariff cuts will cause: (1) employment to rise in all countries except Switzeriand; (2) a
very small depreciation of the dollar; (3) import and therefore consumer prices so fall in all countries; and (4) welfare to improve in all countries except Germany and Switzerland. In most cases, however, these changes are sufficiently small so that they would probabiy not be noticed when accompanied by all of the other changes that constantly occur in a dynamic economy.

Nontariff barriers are in general much more difficult to quantify than are tariffs. Based on complaints filed with STR, we constructed an inventory of such barriers as faced by American exporters, but this inventory could not be used to rake aumerical estimates of their sizes or effects. Therefore, in our estigates, we have focused on two specific NTB's for which numerical information was available. The first pertains to trade in agricultural commodities, for which the U.S. has obtained concessions from most of its trading partners in the form of increased import quotas. In retura, the U.S. has agreed to permit more imports of cheese under qucta. The second NTB for which quantitative information was available pertained to govemment-procurement regulations. Here we were given estimates of the total amount of government expenditure in each country that was subject to such regulation and would be liberalized as a result of the negotiations.
we used our model, then, to analyze the effects of both the agricultural concessions and the procurement liberalization. The results were mostly similar to those of the tariff changes discussed above, though even smaller in magnitude. And the U.S. fared even better under the changes in NIB's than under the tariff changes, gaining employment even under fixed exchange rates.

The combined effects of both tariffs and NTB's were also estimated. The results were so similar to those for tariff changes alone that they need not be discussed further here. Jur general conclusion, then, is as follows. These
aspects of the MTN which we have beor able to quantify - including both tariff changes and liberalization of certain NTB's -- appear to be beneficial for almost all of the countries involved, including the U.S. Adjustment problems in labor marcets appear to be either nonexistent or negligible at the country level. And even at the more disaggregated industry level, where employment changes occasionally amount to several per cent of an industry's labor force in some of the smaller countries, these adjustment problems should be slight given that the changes are to be phased in over a period of up to a decade.

APPENDIX A

The Model

The model that we have developed is a multi-sector model of the world economy. It was designed originally to study the effects of multilateral tariff reductions on disaggregated levels of output and employment. ${ }^{1}$ In a subsequent version of the model, we included exchange rates and other exogenous variables besides tariffs. The effects of exchange-rate changes are presented in Deardorff et al. (1977b), and it is the version of the model used in that paper chat will be presented below. ${ }^{2}$ We have since modified the model to take various nontariff barriers into account. These modifications have been discussed above in Section II, but they are not represented in our formal presentation that follows. The model includes supply and demand functions and market-clearing conditions for 22 tradable industries in world markets, plus markets for these and another 7 nontradable industries within each of 18 countries. The size of the model precludes our obtaining a meaningful and general analytical solution. Therefore, we have restricted the functional forms to ones whose parameters are either readily observable from available data or which have been estimated by others using econometric techniques. Within these constraints, however, we have tried to select functional forms which permit a rich variety of behaviour and which experience suggests provide a reasonable description of economic reality.

Equations of the Model.

The complete model, though without the functional forms, is presented as equations (1) through (12) in Table A.1. The construction of the functional forms in equations ($1-4$) and (12) will be explained below.

The model includes il countries, $i=1, \ldots, m$, producing and trading n goods, $j=1, \ldots, n$, and producing an additional (n ' $-n$) nontradable
goods, $j=n+1, \ldots, n^{\prime}$. A distinguishing characteristic of our model, however, is that both producers and consumers distinguish, within tradable industries, between goods which are produced and used in the same country, which we will call home goods, and those which are either exported or imported. Thus, within each country and tradable industry, producers are separated into two sectors: a home sector which sells only to domestic users, and an export sector which sells only to users in other countries. Each sector has its own supply function, reflecting an assumption that there exist fixed factors of production which cannot be transferred between the two sectors in the relevant short run. This nontransferability may be the result of locational requirements or of the need for special product characteristics in the various national markets, though neither of these features is explicit in our model.

Demanders, too, differentiate between home-produced and imported products of a given tradable industry. In principle, we would like this differentiation to apply among imports from different countries as well as between home-produced and imported goods generally. However, data limitations and the difficulty of solving a more general model have led us to permit only the latter kind of differentiation. Thus, consumers, as well as producers in their role as demanders of intermediate inputs, are assumed to regard home-produced and imported goods as imperfect substitutes, but inports from . various foreign countries as perfect substitutes. Finally, we assume that demanders are never willing to use the products of their domestic export sectors.

With these assumptions, three separate prices will obtain within each country, i, for each tradable irdustry, $j=1, \ldots, n$. First, a home price, $p_{i j}^{H}$, is both paid by users and received by producers in the home sector. It

Table A. 1
Equations of the Model

Supply functions of products for export

$$
\begin{align*}
& s_{i j}^{X}=s_{i j}^{X}\left(p_{i j}^{X}, p_{i 1}^{H}, \ldots, p_{i n^{\prime}}^{H}, p_{i 1}^{M}, \ldots, p_{i n}^{M}, w_{i}, K_{i j}^{X}\right) \tag{1}\\
& \quad 1=1, \ldots, m ; j=1, \ldots, n
\end{align*}
$$

Supply functions of products for home use
(2)

$$
\begin{aligned}
& s_{i j}^{\mathrm{H}}=s_{i j}^{\mathrm{H}}\left(p_{i j}^{\mathrm{H}}, p_{i 1}^{\mathrm{H}}, \ldots, p_{i n}^{H}, p_{i 1}^{M}, \ldots, p_{i n}^{M}, w_{i}, R_{i j}^{H}\right) \\
& \quad i=1, \ldots, m ; \quad j=1, \ldots, n^{\prime}
\end{aligned}
$$

Demand functions for imported goods
(3)

$$
\begin{aligned}
& D_{i j}^{M}=D_{i j}^{M}\left(P_{i j}^{M}, P_{i j}^{H}, E_{i}, S_{i l}^{H}, \ldots, s_{i n}^{H}, s_{i 1}^{X}, \ldots, s_{i n}^{X}\right) \\
& \quad 1=1, \ldots, m ; j=1, \ldots, n
\end{aligned}
$$

Demand functions for home-produced goods
Tradables:
(4a)

$$
\begin{aligned}
D_{i j}^{H}= & D_{i j}^{H}\left(p_{i j}^{H}, p_{i j}^{M}, E_{i}, s_{i 1}^{H}, \ldots, s_{i n}^{H}, S_{i 1}^{X}, \ldots, s_{i n}^{X}\right) \\
& 1=1, \ldots, m ; j=1, \ldots, n
\end{aligned}
$$

Nontradables:
(4b)

$$
\begin{gathered}
D_{i j}^{H}=D_{i j}^{H}\left(p_{i j}^{H}, E_{i}, s_{i 1}^{H}, \ldots, s_{i D^{\prime}}^{H}, S_{i i}^{X}, \ldots, S_{i n}^{X}\right) \\
i=1, \ldots, m ; j=n+1, \ldots, n^{\prime}
\end{gathered}
$$

Equations of the Model (Cont.)

Export prices
(5) $\quad P_{i j}^{X}=R_{i} P_{j}^{W} \quad i=1, \ldots, m ; \quad j=1, \ldots, n$

Import prices
(6) $\quad P_{i j}^{M}=t_{i j} R_{i} P_{j}^{W} \quad i=1, \ldots, m ; j=1, \ldots, n$

Consumer expenditure and tariff revenue
(7)

$$
E_{i}=E_{i}^{0}+\sum_{j=1}^{n}\left(t_{i j}-1\right) R_{i} P_{j}^{W} D_{1 j}^{M} \quad i=1, \ldots, m
$$

Market equilibrium for home goods
(8) $\quad s_{i j}^{\mathrm{A}}=D_{i j}^{\mathrm{Z}} \quad 1=1, \ldots, m ; j=1, \ldots, n^{\prime}$

Market equilibrium for traded goods
(9)

$$
\sum_{i=1}^{a} s_{i j}^{X}=\sum_{i=1}^{m} D_{i j}^{M} \quad j=1, \ldots, n
$$

Trade balance
(10) $\quad B_{i}^{T}=\sum_{j=1}^{n} P_{j}^{W}\left(S_{i j}^{X}-D_{i j}^{M}\right) \quad 1=1, \ldots, m$

Exchange rates
(11a) $\quad R_{1}=R_{1}^{0} \quad$ (Fixed Rates) $\quad 1=1, \ldots, m$
(11b) $\quad B_{i}^{T}+B_{i}^{K O}=0, R_{m}=R_{m}^{0}$ (Flexible Rates) $i=1, \ldots, m-1$

Demand functions for labor
Tradables:
(12a) $\quad L_{i j}=L_{i j}^{X}\left(w_{i}, S_{i j}^{X}, K_{i j}^{X}\right)+L_{i j}^{H}\left(w_{i}, S_{i j}^{H}, R_{i j}^{H}\right) \quad i=1, \ldots, m ; j=1, \ldots, n$

Equations of the Model (Cont.)

Nontradables:

$$
\begin{equation*}
L_{i j}=L_{i j}^{H}\left(w_{i}, S_{i j}^{H}, R_{i j}^{H}\right) \quad i=1, \ldots, m ; j=n+1, \ldots, n^{\prime} \tag{12b}
\end{equation*}
$$

Notation:

Endogenous Variables:

$$
\begin{aligned}
& S_{i j}^{X}, S_{i j}^{H}=\begin{array}{c}
\text { Supply of good } j \text { by country } i, \text { export and home sectors, } \\
\text { respectively }
\end{array} \\
& D_{i j}^{M}, D_{i j}^{H}=\begin{array}{c}
\text { Demand for good } j \text { in country } i, \text { imported and home-produced, } \\
\text { respectively }
\end{array} \\
& P_{i j}^{X}, P_{i j}^{M}=\begin{array}{c}
\text { Domestic price of good } j \text { in country } i, \text { exported and imported, } \\
\text { respectively }
\end{array} \\
& P_{i j}^{H}=\text { Home-sector price of good } j \text { in country } i \\
& P_{j}^{W}=\text { World price of good } j \\
& E_{i}=\text { Consumer expenditure in country } i \\
& B_{i}^{T}=\text { Balance of trade of country } i \\
& R_{i}=\text { Exchange rate of country } i \text { (domestic currency per unit } \\
& \text { of world currency) }
\end{aligned}
$$

Exogenous Variables:

$$
\begin{aligned}
\mathbb{K}_{i j}^{X}, K_{i j}^{H} & =\begin{array}{c}
\text { Capital stock of industry } j \text { in country } i, \text { export and home } \\
\text { sectors, respectively }
\end{array} \\
W_{i} & =\text { Money wage in country } i \\
t_{i j} & =\begin{aligned}
& 1 \text { plus the ad valorem tariff on imports of good } j \text { into } \\
& \text { country }
\end{aligned} \\
E_{i}^{0} & =\text { Exogenous component of expenditure in country } i \\
R_{i}^{0} & =\text { Exogenous exchange rate } \\
B_{i}^{K O} & =\text { Exogenous capital inflow in country } i
\end{aligned}
$$

is determined by a purely domestic market which equates home-sector supply, $S_{i j}^{\mathrm{I}}$, with home demand, $D_{i j}^{\mathrm{I}}$.

The second and third prices are those of exports and imports. The export price, $P_{\text {ij }}^{X}$, is received by producers in the export sector and the import price, $P_{i j}^{M}$, is paid by users of imports. These prices are determined simultaneously in a singl. world market in which the sua of all countries' export supplies, $\mathrm{S}_{1 j}^{X}$, is equated to the sum of all countries' import demands, $D_{i j}^{M}$. Since demanders regard imports (of industry j) from all countries but their own as perfect substitutes, all countries' export prices must be identical when expressed in a common numeraire (we do oot allow for export subsidies). Import prices are then equal to the corresponding export prices augmented by ad valorem tariffs. With these relationships ouly a single world price for each tradable industry, p_{j}^{W}, expressed in units of a numeraire currency, needs to be determined by the world market. Corresponding export and import prices for each country, 1 , then follow by multiplying p_{j}^{W} by exchange rates, R_{i} (expressed in units of domestic currency per unit of the numeraire), and, for import prices, by one plus the corresponding ad valorem tariff, $t_{i j}$.

The model is completed by specifying markets for foreign exchange with either fixed or flexible exchange rates (as separate cases) and by specifying the determinants of supply and demand. The latter include exogenous nominal wages, W_{i}, and capital stocks, $\mathbb{R}_{i j}$, $2 s$ well as appropriate prices and will be explained more fully below. In addition, demands depend also on endogenous levels of consumer expenditure, E_{i}, which incorporate an assumption that all tariff revenue is redistributed and spent by consumers.

Exchange markets either endogenously determine trade balances, $\mathrm{B}_{1}^{\mathrm{T}}$ (measured in units of the numeraire currency), or, under flexible exchange
rates, adjust via the exchange rate to maintain these trade balances at constant levels, $-B_{i}^{K 0}$. In the latter case, $B_{i}^{K O}$ represents an exogenously given inflow of capital into country i, which must, for consistency, have the property that the sum for all countries equals zero.

With these remarks, the reasons for most of the equations in Table A.l should be clear. Equations (1) and (2) are the supply functions for the expor: and home sectors, respectively. Both depend on prices of all home and imported goods, reflecting their use as intermediate inputs in production. Equations (3) and (4) are the demand functions for imports and for home goods, respectively. The inclusion of home and export supplies in these functions again reflects the demand for intermediate inputs.

Equations (5) and (6) determine the domestic prices of exports and imports in terms of corresponding world prices, exchange rates, and tariffs. Equation (7) defines expenditure as the sum of an exogenous component, E_{i}^{0}, and of the tariff revenue.

Equations (1-7) each determine the variable that appears on the lefthand side. The prices of home goods, on the other hand, are determined implicitly by the market-equilibrium condition in equation (8). Likewise, world prices are determined by the market-equilibrium condition in equation (9), which adds up and equates the supplies of exports and the demands for imports from all countries.

Trade balances are defined in equation (10) by adding up net exports for all of a country's tradable industries, valued at world prices. The exchange regime is represented by either equation (1la) for fixed exchange rates or equation (11b) for flexible exchange rates. 'In the fixed case, each country's exchange rate, R_{i}, is set exogenousiy equal to its pegged value, R_{i}^{0}. In the
flexible case, on the other hand, we form exchange-market equilibrium conditions for all but one of the countries by setting the sum of their trade balances and their exogenous capital inflows equal to zero. Only a - 1 of the markets need to be cleared explicitly, since the homogeneity of the system assures that if these are cleared, the omitted market will be cleared as well. Bowever, to remove the indeterminacy of prices and exchange rates that would otherwise arise, we must then specify a numeraire. This is done in the last of equations (11b), where we fix the exchange rate of country m.

The selection of the numeraire is not trivial in this model, since exogenous capital flows are specified in units of the numeraire. As exchange rates change, the values of these flows in local currency change, unless it is the numeraire, and this affects the equilibrium that is ultimately reached. In our applications of the model in this paper, we have chosen the United States dollar as the numeraire.

Equations (1) through (11) are together sufficient to determine all of the endogenous variables that they contain. Equation (12) then determines employment in each industry and country as a function of these variables. Employment in this version of the model is entirely demand determined, the assumption being that labour markets do not clear in the relevant short run and that there is sufficient available unemployed labour to satisfy whatever increases in demand occur. Nominal wages, accordingly, are taken as exogenous, and the employment changes that are implied by the model indicate changes in labour-market disequilibrium.

Derivation of Functional Forms

Explicit supply and demand functions for use in the model were derived from utility and profit-maximization behaviour on the part of consumers and
firms, assuming explicit utiiity and production functions. Details of these derivations are contained in a working paper, which can be consulted for further information. ${ }^{3}$ Here we will merely report the assumptions that were made and the results.

Since both producers and consumers in our model are demanders of goods, and since each tradable industry has both imported and home-produced goods available to demanders, it was necessary first to characterize the choice between these two sources of goods. This was accomplished by assuming the existence of functions for each industry that aggregate the services of home and imported goods, and which then enter as arguments for the utility and production functions. To assure some flexibility in selecting the degree of substitution between home and imported goods, these aggregation functions were specified as Constant Elasticity of Substitution (CES) functions. The elasticity parameters of these functions for each industry were then inferred from published econometric estimates of import demand elasticities. ${ }^{4}$

To obtain demand functions for consumers, we then specified a CobbDouglas utility function. Its arguments were these aggregates of consumption of home and imported tradable goods plus the consumption levels themselves of nontradables. By maximizing this utility function subject to the constraint of a given level of expenditure, we obtained the consumers' demand functions for eaci industry. The differentiated forms of these demand functions appear below as equations (13) for imported goods and (14) for home goods. ${ }^{5}$

$$
\begin{gather*}
e C_{i j}^{M}=e E_{i}+\theta_{i j}^{H}\left(\sigma_{i j}-1\right) e p_{i j}^{H}-\left(\theta_{i j}^{M}+\theta_{i j}^{H} \sigma_{i j}\right) e p_{i j}^{M} \tag{13}\\
i=1, \ldots, m ; \quad j=1, \ldots, n
\end{gather*}
$$

$$
\begin{align*}
& e C_{i j}^{H}=e E_{i}-\left(\theta_{i j}^{H}+\theta_{i j}^{M} \sigma_{i j}\right) e p_{i j}^{H}+\theta_{i j}^{M}\left(\sigma_{i j}-1\right) e p_{i j}^{M} \tag{14a}\\
& i=1, \ldots, a ; j=1, \ldots, n \text { (tradables) } \\
& e C_{i j}^{H}=e E_{i}-e p_{: j}^{H} i=1, \ldots, m ; j=n+1, \ldots, a^{\prime} \quad \text { (nontradables) } \tag{14b}
\end{align*}
$$

where

$$
\begin{aligned}
& \text { precuces af industry } j \text {, } \\
& \theta_{i j}^{M}, \theta_{i j}^{H}=\begin{array}{c}
\text { ini:ial shares of demand in country } i \text { for imported and } \\
\text { home-produced products of industry } j \text {, and }
\end{array} \\
& \sigma_{i j}=\begin{array}{c}
\text { Elasticity of substitution in country } i \text { between imported } \\
\text { and home produced products of industry } j \text {. }
\end{array}
\end{aligned}
$$

Notice that these demands depend only on expenditure and on the home and import prices of the own industry. Prices of other goods do not appear, since the assumption of a Cobb-Douglas vetlity function forces all cross elasticities of demand to be zero.

To derive the behaviour of firms, we assumed in this version of the model that production functions were characterized by fixed coefficients among the home-import aggregates for each industry and between these and an aggregate of primary factors as well. ${ }^{6}$ The aggregate function for primary factors (labour and capital) was also specified as CES. ${ }^{7}$ For each industry, production functions were assumed to be identical across countries. While the model could easily accommodate different input-output data for each country, we lacked the time and resources to gather and process the requisite data.

By solving the profit-maximization problem for the firm, subject to the constraints of its production technology and its given capital stock, we obtained the following supply functions for the export and home sectors:

$$
\begin{align*}
e S_{i j}^{X} & =\varepsilon_{j} e p_{i j}^{X}-\varepsilon_{j} \sum_{k=1}^{n} b_{k j}\left[\theta_{i k}^{H} e p_{i k}^{H}+\theta_{i k}^{M} e p_{i k}^{M}\right] \tag{15}\\
& -\varepsilon_{j k} \sum_{n+1}^{\sum^{\prime}} b_{k j} e p_{i k}^{H}-\varepsilon_{j} b_{j}^{0} e w_{i}+e K_{i j}^{X} \quad i=1, \ldots, m ; j=1, \ldots, a
\end{align*}
$$

$$
\begin{align*}
e S_{i j}^{H} & =\varepsilon_{j} e p_{i j}^{H}-\varepsilon_{j} \sum_{k=1}^{\sum_{l}} b_{k j}\left[\theta_{i k}^{H} e p_{i k}^{H}\right. \tag{16}\\
& \left.-\varepsilon_{i k}^{M} e p_{i k}^{H}\right] \\
& \sum_{n^{\prime}+1}^{H} b_{k j} e p_{i k}^{H}-\varepsilon_{j} b_{j}^{0} e w_{i}+e R_{i j}^{H} \quad i=1, \ldots, m ; j=1, \ldots, n^{\prime}
\end{align*}
$$

where

$$
\begin{aligned}
& \varepsilon_{j}=\text { Supply elasticity of industry } j, \\
& b_{k j}=\text { Input-output coefficients for use of good } k \text { as input in } \\
& \quad \text { industry } j, \text { and } \\
& b_{j}^{0}=\text { Value-added share of industry } j .
\end{aligned}
$$

The same problem also yields the following demand functions for imported and home-produced intermediate inputs:

$$
\begin{array}{ll}
e Z_{i j}^{M}=e Q_{i}-\theta_{i j}^{H} \sigma_{i j}\left[e p_{i j}^{M}-e p_{i j}^{H}\right] & i=1, \ldots, m ; j=1, \ldots, n \\
e Z_{i j}^{H}=e Q_{i}+\theta_{i j}^{M} J_{i j}\left[e p_{i j}^{M}-e p_{i j}^{H}\right] & i=1, \ldots, m ; j=1, \ldots, n \\
& (\text { (tradable) } \\
e Z_{i j}^{H}=e Q_{i} & 1=1, \ldots, m ; j=n+1, \ldots, n^{\prime} \tag{18b}\\
& \text { (nontradable) }
\end{array}
$$

where

$$
\begin{aligned}
z_{i j}^{M}, z_{i j}^{H}= & \begin{array}{c}
\text { Demand for imported and home-produced inputs of good } j \\
\\
\text { by an arbitrary sector of country } i \text {, and }
\end{array} \\
Q_{i}= & \text { Supply of the demanding sector }\left(Q_{i}=S_{i k}^{X}, k=1, \ldots, n\right. \\
& \text { and } \left.S_{i k}^{H}, k=1, \ldots, n^{\prime}\right) .
\end{aligned}
$$

Unlike the consumers' demand functions, the firms' supply functions do depend on prices in all industries, since all potentially provide intermediate
inputs. Also, while the firms' demand functions do not directly involve cross-price effects, they do have such effects indirectly, since they depend on supplies, which in turn depend on all prices. Thus, the warkets in our model turn out to be very interconnected.

Finally, the firms' demands for labour were also derived from the maximization problem as follows:

$$
\begin{gather*}
e L_{i j}=Y_{i j}^{X}\left[\frac{1}{\theta_{i j}^{L}} e S_{i j}^{X}+\frac{\theta_{i j}^{R}}{\theta_{i j}^{L}} e K_{i j}^{X}\right]+\left(1-r_{i j}^{X}\right)\left[\frac{1}{\theta_{i j}^{L}} e s_{i j}^{H}+\frac{\theta_{i j}^{R}}{\theta_{i j}^{L}} e K_{i j}^{H}\right] \tag{19a}\\
1=1, \ldots, m ; j=1, \ldots, n \quad \text { (tradable) }
\end{gather*}
$$

$$
\begin{equation*}
e L_{i j}=\frac{1}{\theta_{i j}^{L}} e S_{i j}^{H}+\frac{\theta_{i j}^{R}}{\theta_{i j}^{L}} e R_{i j}^{H} \quad i=1, \ldots, m ; j=n+1, \ldots, a^{\prime} \tag{19b}
\end{equation*}
$$

where

$$
\begin{aligned}
& Y_{i j}^{X}=\begin{array}{c}
\text { Share of exports in total production of industry } j, \\
\text { country } i, \text { and }
\end{array} \\
& \theta_{i j}^{L}, \theta_{i j}^{K}=\begin{array}{c}
\text { Labour and capital shares of valued-added in industry } j \\
\text { country } i .
\end{array}
\end{aligned}
$$

Note that these labour demand functions, like the supply functions on which they are based, do depend indirectly on wages, both nominal and real. The index of real wages in each industry is different, however, based upon the coefficients of the various price terms that enter the supply functions.

All of these supply and demand functions were derived at the level of the individual firm and consumer, and had to be aggregated to obtain the corresponding functions for the economy as a whole. Aggregation of supplies was trivial, given our assumption of linearly homogenous technologies. Aggregation of demand, however, was more difficult, since demanders of a given
good include all other industries as well as consumers, each with a different demand function. Adding these up and differentiating, we obtained the following demand functions for the country as a whole:

$$
\begin{align*}
e D_{i j}^{\mathrm{B}} & =-\left[v_{i j 0}+\theta_{i j}^{M}\left(\sigma_{i j}-v_{i j 0}\right)\right] e p_{i j}^{H}+\theta_{i j}^{M}\left(c_{i j}-v_{i j 0}\right) e p_{i j}^{M} \tag{21a}\\
& +v_{i j 0} e E_{i}+\sum_{k=1}^{n} v_{i j k}\left[\gamma_{i k}^{X} e S_{i k}^{X}+\left(1-\gamma_{i k}^{X}\right) e S_{i k}^{H}\right] \\
& +{ }_{k=n+1}^{\sum_{i}^{\prime}} v_{i j k} e S_{i k}^{H} \quad 1=1, \ldots, m ; \quad j=1, \ldots, n \quad \text { (tradable) }
\end{align*}
$$

$$
\begin{align*}
e D_{i j}^{H} & =-v_{i j 0} e p_{i j}^{H}+v_{i j 0} e E_{i}+\sum_{k^{\prime} 1}^{n} v_{i j k}\left(\gamma_{i k}^{X} e S_{i k}^{X}+\left(1-\gamma_{i k}^{X}\right) e S_{i k}^{H}\right] \tag{2lb}\\
& +\sum_{k=\sum_{n+1}^{n}}^{n^{\prime}} v_{i j k} e S_{i k}^{H} \quad i=1, \ldots, m ; j=n+1, \ldots, n^{\prime}
\end{align*}
$$

(nontradable)
where

$$
\begin{aligned}
& v_{i j 0}=\begin{array}{c}
\text { Share of consumer demand in total demand for good } j \text { in } \\
\text { country } i \text { and }
\end{array} \\
& \left.v_{i j k}=\begin{array}{c}
\text { Demand by industry } k \text { for } g o o d ~ \\
\\
\text { for good } j \text { as a share of total demand } \\
\end{array}\right] .
\end{aligned}
$$

Once the unspecified functions in equations (1-4) and (12-13) are replaced with appropriately indexed versions of equations (15), (16), (20), (21), and (19), the model is complete. In addition to the elasticity parameters and input-output coefficients already discussed, its solution requires information on exports, imports, total production, and tariffs for each country and industry to be included. We turn now to a description of the selection of countries and industries used for the current application of the model.

Application of the Model

The model we have just described is designed to take into account as many as possible of the interconnections among industries and countries at the microeconomic level. The benefit of this is that it enables us to examine a variety of economic issues that other models cannot address, either because they are too highly aggregated, or becausc they are specified only in partial equilibrium terms. The cost, on the other hand, is that our model is far too large to be able to say anything concrete without further specification of its parameters. Thus, to use the model, we must apply it to a realistic selection of countries and industries using, as far as possible, actual data to general the parameters.

We therefore selected the world's 18 major industrialized countries as -. our focus for analysis, and treated the rest of the world as a residual in order to close the system. The reason for this choice was the compilation of detalled information on ad valorem tariffs at the line-item level for these countries on a 1976 basis in machine-readable form by the General Agreement on Tariffs and Trade (GATT). 8 Import and export data for 1976 were
obtained Ercm ت̈nited Natiuns trade tapes provided by STR. The 18 countries covered were as Eoliows:

Australia	Italy
Austria	Japan
Belgium-Luxembourg	Nether'ands
Canada	New Zealand
Jenmark	Norway
Finland	Sweden
France	Switzerland
West Gernany	United Kingdom
Izeland	United States

Information on output and employment was obtained diructly or otherwise estimated from the United Nations, Yearbook of industrial Statistics, and from the OECD publications on national accounts and labour statistics. We used a classification of industries based upon the International Standard Industrial Classification (ISIC), broken down into tradables and nontradables. For manufacturing industries we used the three-digit ISIC data, while for che remaining industries, mostly nontraciable, we remained at the more aggregated one-digit level. The 29 uncustries were as Eollows:

Tradables

ISIC Group
Description
1
310
Agriculture, hunting, forestry, \& fishing
321
Food, beverages, and tobacco
Textiles
322
323
324
331
332
341
342
35A
35B
355
36A
362
371
372
381
382
383
384
38A
Wearing apparel, exc. footwear Leather \& leather \& fur products Footwear
Wood products, exc. furniture
Furniture \& fixtures, exc. metal
Paper \& paper products
Printing, publishing
Industrial chemicals (351); Other chemical products (352)
Petroleum refineries (353); Misc. prod. of petroleum \& coal (354)
Rubber products
Pottery, china \& earthenware (361); Other nonmetallic min. prod. (369)
Glass \& glass products
Iron \& steel basic industries
Non-ferrous metal basic ind.
Metal products, exc. machinery, etc.
Machinery, exc. electrical
Electrical machinery, apparatus, etc.
Transport equipment
Plastic products, n.e.c. (356); Professional photogr. goods, etc. (385); Other manuf. industries (390)

Nontradables

ISIC Group
Description
Mining and quarrying
Electricity, gas, and water
Construction
Wholesale \& retail trade, restaurants \& hotels
Iransport, storage, \& communication
Finance, insurance, real estate, etc.
Community, social \& personal services

Given appropriate data for the above countries and industries, solution of the model should, in principle, be straightforward. By differentiating all of the equations of the model, we obtained a system of linear equations relating changes in all of the variables of the system. The coefficients in each of these linear equations were evaluated using the data and elasticity information we had collected. All that remained was to solve the system. Since the system was linear, it could in principle be solvet by any of a variety of means.

In fact, however, the size of the model made this difficult. With 18 countries and 29 countries, what we have represented here as single equations each become a large number of separate equations to be solved. Depending on how many of these equations were first eliminated by substitution, the number of equations in the model could be as large as 6,000 . Such a large system strains the capacity of even high-speed computers. And while the number of equations can be reduced substantially by prior substitutions, the substitutions themselves involve a tremendous amount of computation. It was to avoid these difficulties that, in earlier applications of the model, we introduced a number of approximations to reduce the amount of simultaneity in the system. ${ }^{9}$
we have since been able to obtain exact solutions. To do so, we first devised several Fortran subroutines that process large partitioned matrices in which many of the partitioned blocks contain only zeros, and which avoids costly but meaningless computations involving these zeros. Second, we used a Fortran programming technique known as dynamic dimensioning to avoid wasting computer memory space on these emply blocks, even as the contents of all blocks change auring the colrse of the solution. And finally, we applied these techniques iirst :o each of the 18 countries separately, using only equations (1)
through (8) and (10) to solve for their supplies and demands of traded goods in terms of world prices, exchange rates, and exogenous variables, and then used equations (9) and (11) to complete the solution. The resulting computer program is costly, but within reason.

Footnotes

1
See Deardorff et al. (1977a), where an approximate solution of the current model was used for this purpose.

2
Because we have succeeded in computing the exact solution of the current model, the approximations used in our earlier paper are no longer necessary.

3
See Deardorff et al. (1976).

4 These elasticities are surveyed in Stern et al. (1976). To infer elasticities of substitution from these estimates, we first used our rodel to derive import-demand elasticities in terms of substitution elasticities and measurable parameters such as import shares. The result was then solved for the substitution elasticities. Details are contained in Deardorff et al. (1976).

5 In these and subsequent equations, we use the proportional forn of the rotal differential. For any variable, \underline{X}, the notation eX $^{\text {Xepresents }}$ dX/X, and stands for the (infinitesimal) proportional change in the variable.

6
We have developed a version of the model using a Cobb-Douglas production function instead, but have not yet adapted our solution programe to use it for calculations.

7
The elasticities of substitution between capital and labour were obtained direcily from published estimates in Zarembka and Chernicoff (1971). The fixed coefficients between value added and intermediate inputs were obtained from the input-output table of the United States as published by the Bureau of Economic Analysis (1974).

8 Basic Documentation for the Tariff Study (Geneva: GATT, 1974) and subsequent updating to 1976.

9 These approximations consisted primarily of using exogenous tariff changes to approximate the change in both expenditure and the prices of intermediate goods, and of ignoring demands for intermediate goods in the gemand functions, at certain stages of the solution.

References

Basic Documentation for the Tariff Stidy (Geneva: GATT, 1974).

Bureau of Economic Analysis, "The Input-Output Structure of the U.S. Economy, 1967," Survey of Current Business (Washington: U.S. Government Printing Office, for the U.S. Department of Comerce, February 1974).

Alan V. Deardorff, Robert M. Stern, and Christopher F. Baum, "A Simulation Model of world Trade and Production," mimeographed, 1976.

Alan V. Degrdorif, Robert M. Stern and Christopher F. Baum, "A Multicountry Simulation of the Employment and Exchange-Rate Effects of post-Kennedy Round Tariff Reductions," in N. Akrasanee, S. Naya, and V. Vichit-Vadakan (eds.), Trade and Employment in Asia and the Pacific (Honolulu: The University Press of Hawaii, pp. 36-66). (a)

Alan V. Deardorff, Robert M. Stern, and Mark N. Greene, "The Sensitivity of Industrial Output and Employment to Exchange-Rate Changes in the Major Industrialized Countries," to be published in J.P. Martin and M. A. M. Smith (eds.), Trade and Payments Adjustment Under Fiexitle Exchange Rates (London: Macmillan), 1977 (b).

Rotert M. Stern et al., Price Elasticities in International Trade: A Compilation and Annotated Bibliography of Recent Research (London: Macmillan, 1976).
P. Zarembika and H. B. Chernicoff, "Further Results on the Empirical Relevance of the CES Production Function," Review of Economics and Statistics, February 1971, pp. 106-10.

APPENDIX B

Welfare Effects

Our model was not originally intended to estimate effects on economic welfare, but rather to deal exclusively with wore observable variables such as employment and exchange rates. However, for the purpose of this report, we felt it to be desirable to include at least some crude estimates of the welfare effects of trade liberalization. Therefore, we have added a facility to compute the change in national welfare, based in a rather ad hoc manner on the partial-equilibrium theory of welfare economics combined with the quantitative estimates generated by our model.

Theoretical problems of dealing with both tariffs and nontariff barriers have led us to construct two different welfare measures. The first measure, to be described below, is valid if tariff changes are the only cause of changes in trade, and makes use of both the price and quantity estimates generated by our model. The second measure is valid in principle for both tariffs and NTB's, but its implementation relies on crude estimates of certain unobservable price changes, based on supply and demand elasticities and changes in trade, and may be unreliable in the context of a multi-sector, general equilibrium model such as ours. Accordingly, in the report, we have used one or the other or both when appropriate.

The effects of a tariff change in a partial equilibrium model of supply and demand may be seen in Figure B.1. Here the supply of exports, S_{X}, and the demand for imports, D_{M}, are graphed as functions of their prices. Two equilibria are shown, with quantities traded Q^{0} in the first
and Q^{1} in the second after a tariff reduction. Corresponding export and import prices, which differ to the extent of the tariff, are shown on the vertical axis.

The iacrease in welfare for the exporting country is given by the change in producer's surplus, area $e+f$ in Figure B.1. This can be calculated from our model by multiplying, for each sector, the change in the export price times the initial quantity of exports (to get area e) plus one half of the change in exports (to get area f).

For the importing country, the change in welfare has two parts. First is the increase in consumer's surplus, given by area $a+b$. This can be similarly calculated as minus the change in import price times initial imports plus one half the change in imports. Second is the change in tariff revenue, given by area d - a - e. This is already calculated in our model as the change in final expenditure.

Thus, for our first measure of the change in welfare, we calculate and add these three components for all 22 tradable industries. The result is equivalent geometrically to area $b+d+f$ in Figure B. 1 and gives us a dollar value for the benefits due to trade liberalization. We also calculate this figure as a fraction of gross domestic product to give an idea of the relative importance of the effect for each country.

This measure is theoretically invalid if trade liberalization entails a shift of either the supply or the demand functions rather than only a movement along them in response to tariff changes. Liberalization of government procurement regulaions, for example, may be thought of as an outward shift of the demand function for imports

Figure B. 1
Changes in Economic-Welfare, with Given Demand and Supply Function

Figure B. 2
Changes in Economic Welfare, with Shift in Demand Function
as shown in Figure B.2. In this case, the price and quantity of imports both rise, and our first calculation would show a loss to consumers (though still a gain to producers). Yet the fact that imports were previousiy constrained by the regulation and now increase voluntarily suggests that demanders are in fact better off than before. In a sense, the true demand curve has always been D_{M}^{1}, and prior to deregulation the demanders responded to an artificially high but unobservable price, p^{*}, In demanding the quantity, Q^{0}. Thus their gain in welfare is the implicit change in consumer surplus, area $a+b+c$ in Figure B. 2.

This area cannot be measured directly, since p^{*} - the price at which Q^{0} would be demanded in the absence of regulation - cannot be observed. However, we can infer the price change, $p *$ to p^{1}, from the elasticity of demand and the change in quantity. This is the approach taken in our second measure of welfare. Basically the second measure duplicates the first, except that the changes in export and import prices are replaced by correspording changes in quantities, divided by corresponding elasticities of supply and demand. Since the latter are valid only in a partial equilibrium context, the second measure must be regarded as inferior to the first whenever shifts of supply or demand functions are absent.

APPENDIX C

Data

The tables in this appendix contain the complete data for 1976, by ISIC industry and country, that were used in the study.

Table C. 1 shows the value of gross domestic production in each ISIC industry category together with the row and colum sums. Figures are in millions of U.S. dollars and were derived from the United Nations, Yearbook of Industrial Statistics, and from OECD publications on national accounts.

Tables C. 2 and C. 3 present exports and imports for each industrycountry cell. Figures are in millions of dollars and were computed from United Nations trade tapes provided by STR via the U.S. Department of State.

Table C. 4 gives employment statistics for each industry-country cell. Figures are in thousands of man-years and were compiled from: United Nations, Yearbook of Industrial Statistics; $O E C D$, Labour Force Statistics; and $\mathbb{Z} 0$, Annual Yearbook of Labour Statistics.

Tables C.S and C. 6 present post-Kennedy Round base rate tariffs and MTN offer rate tariffs on industrial products (excluding ISIC 1, 310, and 35B). These are nominal tariff rates expressed in ad valorem form. The underlying data were provided by STR. Own-country total (dutiable + nondutiable) imports were used at the BTN line-item level in the ag8regation process.

Table C. 7 presents indexes of the degree to which imports were subject to nontariff restrictions (e.g., quotas; health regulations, etc.). A value of unity indicates 100 per cent restriction; zero denotes no restriction.

The calculations were based on the detafled data underlying Table 1 in Murray and Walter (1978). The procedure was to record the value of 1973 imports for a given country and commodity category that was subject to some type of NTB, as identified in underiyir; documents prepared by the U.S. Department of State and UNCTAD. The results were aggregated and concorded with our ISIC classification. The indexes were updated to take into account more recent restrictions on such products as footwear, iron and steel, and television receivers. The indexes for textiles (ISIC 321) and wearing apparel (ISIC 322) were based upon the proportion of each country's 1976 imports in these sectors from the rest of world.

Tables C. 8 - C. 14 are based on the tariff and trade data in the relevant tables noted above.

Readers interested in additional information concerning these data can contact the authors. The data can be made available in machine-readable form at cost.

Table C. 1
Value of Production by ISIC Sector
in the Major Industrialized Countries, 1976

$\begin{aligned} & \text { sesyoat } \\ & \text { 14s5i.90ene } \end{aligned}$
11304.1830
3595.91800
1755.10000
303.729000
S25.531000
219 E .12nce
\$15.671400
1796.98008
2529.03080
1060.00960
694.757000
181.698000
2251.84000
141.301004
3919.07400
1081.91900
-984.95700
1516.84.40
2691.20000
5600.90800
2361.70000
9032.69900
S953.19600
26607.2600
29506.6080
14917.5480
28150.1810
1116.0140

Abstract

45810 3919.91000 3690.30000 1513. 12000 -66. 1111000 345.300000 224.199000 222.199030 692.415000 1211.12800 | 1121.12800 |
| :--- |
| 859.624000 | 2112.ssice 2060.64100 318.515000 1155 1255.01200 222.981000 212.981090 2229.78000 j24.j01000 1110.80000 1720.85600 1724.85600 2152.36400 1316.22806 134.265040 1308 1308.19990 178.15308 1780.15306 $9363 . \operatorname{csyec}$ 1767.46800 1255.11900 $\$ 126.51500$ $\$ 120.25700$ 9124.25700 69802.8550

0l6eler 016
3108
131
206
968
172
109
111 14917.5480
28150.1810 61116.6160
212207.620

	Canses
	22187.3600
	3911.11000
	2742.17300
	260.030000
	536.620300
	S101.96800
	1651.09700
	10019.9920
	3452.7a9ce
	1388.23500
	6900.81300
	1969.84000
	2365.55000
	SIE.as0008
	-509.98300
	1305.53100
	1255.63600
	\$3100.71900
	1294.59100
	18165.0120
	1306.35600
	1783. 1180
	10949. 3670
	-10031.2064
	16739.4969
	31352.9160
	45905.7120
	116512.056

\qquad

$\begin{aligned} & \text { Japas } \\ & 60511.0 s 60 \end{aligned}$	
	30109
¢. 112	
	617.124
034.121000	
18503.6	
	6380.96
	11215
31205.6960	
	215
12.1	
616.2980	
	5961
70.0 .5910	
	6005
37105.8	
	(1)17
\$1716. 2240	
21067.6000	
	6035.6750
12730.4120	
108202.496	
$\begin{aligned} & 153074.000 \\ & 56861.5060 \end{aligned}$	
S9109.0000	
iesiesi.	

107.
19.802
16.
-2.
41.29
765.87
981.13
. 5
29
I.
342.10
96.180
612.
571.
${ }^{1}$
460.626
15.9
362.05
1171.50
13.36
71.0
9395.
1024.1
2050.
13705.2920

170^{8}
3119.3510
116.
394.
138.821000
16
69.6060
18.1
14.1
\%.
11.92000
168.6420
392.21
13.3120
15.5
11.1
81.01
ce.05
16.042
151.73
145.662
E0 3.
1216. 51
\$430.01
6011.31
5 7.5
Ale.

$.2301$
36.13130
160.92100
139.011
5.74000
6.197008
1026.2
169.0510
1697.1
109.30
216.
\$11.8250
110.13100
559.51
14.984
135.4130
1191.421
1039.31
1422.2140
1029.31
2286.5490
-18.5060
1194.4
2228.507
1026.5390
9311.0
153
2054.
13668.

675.0060
70es. 7570
972.06600
656.9530
128.8610
105.13900
1091.31
501.222000
+1176.6790
1311.1130
2024.53600
1595.06
549.50
1197.12
200.0000
1911.0130
911.0190
1816.6
1020.269
2911.61
5833.11
141.212090
\$20.709
2519.57600
12112.
11123.046
5336.42
13192.51

2008.	
$\begin{aligned} & 26001.6004 \\ & 42630.1880 \end{aligned}$	
	1090
8191.	
21630.71	
4s67. 3	
6261.091	
	151
S12.11	
46.091	
16161.21	
24167.46	
16617.11	
22131.9640	
9695.61964	
22293.9360	
16530.6720	
61124.7040	
59609.1920	
$\begin{aligned} & 59485.056 \\ & 186 e 99.312 \end{aligned}$	

13671.936	101001.112
215606. 752	S15617.919
13134.7680	140175.478
29015.5040	69719.6140
1054.08108	10511.0980
S959.21100	16683.1880
25812.1280	6)301.6190
12153.2650	37185.7210
55541.9520	125310.308
Se662.0600	101636.781
169515.364	2131891.062
90121.2160	196764.159
16111.4110	-19616.4620
22132.0120	12114.9570
6196.86100	23011.2110
17819.0560	206808.047
42362.6360	95321.4709
12841.0060	191832.153
112182.810	261312.561
15801.6800	222317.693
141030.364	315295.900
\$3218.3800	121155.114
92681.1240	181045.066
6631. 1168	191700. 105
261039.312	1536181.218
661569.829	1223616.19
226216.612	5231026.919
\$62000. 820	961536.196
198310.432	1986169

AUSTEAL	custaIa
2169.50000	119.406000
2443． 00000	269．561000
1665.44700	670.996000
9.97300000	258.074000
294．904000	54．3720000
3．12400000	157．442000
125.521000	559.815000
3.07900000	51.0210000
21.1220000	521.435000
18.5450000	63.3940000
130．294000	546.340000
2041．65t30	206． 172000
13．1280000	144.619000
109．131000	249.278000
6．80900000	19．1630000
487.617000	836.373000
3017.54400	184．900000
94.3120000	44.072000
271.815000	1245.48900
92.0790000	671.152000
169.207000	14A．096000
914.240000	1095.60600
14715.1780	88A0． 02600

JAPAM	METHER
734.424000	$3 H 49.69100$
284.181000	5621.27700
3730.66500	1×07.25400
527.112000	536.373000
186.057000	198.854000
121.346000	15.9550000
178.401000	174.228000
63.6240000	209.370000
176.796000	684.460000
91.1190000	211.914000
3400.53200	5555.86100
146.277000	6581.02700
963.249000	387.875000
748.414000	379.636000
154.854000	142.263000
9416.04000	1294.63600
600.667000	945.907000
2236.94600	800.694000
7748.9700	2545.09200
9003.76500	2106.50900
18302.0820	2264.21300
11624.9730	5066.26000.

1052．84200	3952.20200
001．01300	1022．06100
．40100	115.274000
604.659000	217.362000
152.272000	229.911000
1.7070000	125.284000
239．349000	2245．94100
393．4月7000	3.66400000
632.682000	＋899．73400
188．414000	81.6300000
1142．86900	1144．10200
1648.31600	5394.30900
366.154000	190.503000
444.824000	034.679000
123．641000	99.6790000
？881．9AADO	575.847000
1500.13200	4441．03100
944.992000	＋31．647000
2324．7月700	2971．24700
1597.82200	915.666000
3944． 21800	0315.26500
7． 45400	5452．08400
32250.6290	41940.8130

$n E 4 月 4 R A$
1114.21800
2025.35500
239.161000
174.595000
171.105000
35.1240000
123.610000
171.146000
20.4650000
47.9150000
589.386000
334.642000
31.4410000
136.523030
34.6110000
115.347000
80.8930000
223.375000
1465.45300
454.624000
331.514000
976.220000
8998.72100
16.0310000
177.208000
119.195000
336.741000
188.119000
57.8490000
780.128000
62.9410000
2139.55700
35.4900000
226.935000
101.979000
12.7570000
34.2550000
40.5880000
168.217000
220.628000
159.127000
657.369000
253.306000
686.275000
276.797000
6815.56900
$18422 A 1$.
174.380000
1339.20100
630.079000
25.2030000
134.885000
2.75600000
75.8450000
7.18900000
157.331000
3.18100000
22.0220000
3.79300000
1.88600000
4.18000000
5.09200000
6.65000000
126.706000
18.6780000
56.4050000
15.8980000
20.6600000
225.625000
3057.64700
voanay 528.550000 312.673000 96.4525000 17． 4690000 77.6830000 10.7330000 111.817000 46.5570000 604.330000 13.9410000 463.830000 1031.03700 23.6240000 103.041000 12.0240000 503.715000 1141.00400 196.053000 475.828000 275.251000 1170.28400 497.223000 7733.21900

SHEDEM 259.610000 251.869000 251．738500 157.636000 126.011000 48.4470000 1122.60600 223.099000 2922.08100 76.5330000 806.288000 358.981000 137． 114000 129.528000 74.2400000 1216.25600 733.420000 677.310000 3105.10100 1540.35100 3480.51500 1432.92800 19133.6620

SMITZE 126.616000 463.452000 904.353000 181.112000 11.9560000 66.5350000 118.547000 56． 1660000 159.625000 142.610000 3226.80000 250.256000 64.0300000 84.0960000 32． 1050000 161.247000 250.357000 520.527000 3502．74000 1194.15600 209． 191000 －309． 85000 16086.9290

$\begin{aligned} & \text { YAABCE } \\ & 30 \times 5.15700 \end{aligned}$	
$\begin{aligned} & 3645.15700 \\ & 4 y 97.04100 \end{aligned}$	
2472．99400	
1204.24200	
490.618000	
333．066000	
48.6 .655000	
229．437000	
196.607000	
434.025000	
5566.41200	
1660.04100	
1194．30800	
684.399000	
517.264000	
3646．34900	
1063.44200	
1840.23300	
8107.67000	
3449．99000	
9664．91500	
5306.62300	
1843．5580	

0． 8.
580.636000 2608.79400 2183.60000 761.948000 434.197000 134.197000 158.144000 122.887000 216.250000 550.712000 570.363000 5694.59800 2584.31300 724.722000 728.47000 261.590000 1445.66800 1006.70700 $1 / 31.11100$ $8634.339 n 0$ 3102.41100 6020.42700 7026.04500 $+7208.5360$

$\begin{aligned} & \text { GEandny } \\ & 1192.94800 \end{aligned}$	
$\begin{aligned} & 1192.94800 \\ & 3648.98700 \end{aligned}$	
398． 61	
1399.54200	
534.65000	
24.527	
1021.492	
1439．9a80	
654.5790	
12231.110	
2621.8540	
1119.7810	
484.820	
587.57100	
141.827	
964.95	
1319．235	
22391.291	
133．3380	
17030	
8830.15600	

U．S．
17785.0700 5146.82500 3311.89800 654.112000 654.112000 1014.15900 71.2980000 2500.34300 276.279000 2788.89000 812.283000 12.283000 10654.6600 4616.48100 906.204000 994.099000 478.9310000 2048．34400 2048．34400 1926． 91700 2722.75200 22895.8750 8683.71000 20179.0260 14950．0260 14550.1250 125500.294

1AELAMn 326.207000 1089.31100 245.581000 101． 148000 60.8200000 23.8810000 22． 1530000 22． 1530000 12．8740000 10．5：100000 29.3030000 301．394000 153.994000 50057000 50.0570000 84.1500000 21.4340000 13． 4820000 63.0171000 96.1620000 96.1620000 240.537000 143.733000 75.9930000 298.853000 3492.79800
sun
39360.3840
35543.8010
27282.7430 9291.09000 1810.01100 3424.86100 9981.36500 3727.86000 19295.1980 3748.23100 58144.7170 31598.0070 7136.09800 8389.71100 3293.36800 33702.3140 19646.8140 19459.5710 95507.2610 43803.4720 95005.0460 75462.4190 641615.202

1TALT 1672.89000 1677． 38400 2265．03100 2095． 11700 391.348000 1830.30300 208． 930000 678.185000 364． 864000 212.152000 2823.15000 1852.87300 593.144000 1156.24400 270.906000 1702.69100 370.540000 1962． 14500 6865.23000 1809.71100 4533.52200 3740.55700 39212.3820

Table C. 3

Imports by ISIC Sector
In the Major Industrialized Countries, 1976

AISSTEIA 528.108000 459.269000 115.227000 367.762000 112.391000 127.550000 181.545000 165.102000 141.531000 144.662000 1083.60700 1v14.89900 150.667000 226.124000 74.4270000 319.582000 303.463000 401.643000 1394.19700 839.726000 1344.35200 13 87. 3 A 6000 11523.2200

8L6eLII 2161.51000 2175.04600 1676.51500 907.409000 162.561000 250.873000 503.996900 335.789000 821.849000 220.632000 3142.05600 4992.54100 370.1112000 556.096000 179.317000 1196.32400 2187.47600 856.140000 3025.19800 1503.63700 4349.64300 434.64300
$3066.42 A 00$ 35161.4540

CAMADA
1716.44900 1654.68400 $1293.34: 00$ 727. 364000 284. 365000 222.145000 500.704000 189.667000 567.902000 509.568000 2373.34400 4383.95900 186.309000 +09. 132000 253.170000 730.393000 87!.893000 1085.91100 6690.13300 2211.71600 10371.0950 10371.0950
2806.10600 40399.3610

DEMAARE 742.419000 692.711000 581.031000 286.275000 216.119000 13.6480000 383.677000 109.532000 436.906000 11.4710000 11.4710000
1105.71000 2041.05400 132.253000 175.984000 04. 5430000 596.225000 212.684000 351.401000 1182.20100 770.850000 1488.37000 1488.37000 653.086000
12403.7120
B 1A5.176000 380.537000 77.8460000 15.8190000 29.4020000 165.202000 21.1740000
58.1120000 599030000 699.405000 90.5430000 A2.AS 20000 31.8010000 317.566000 111.554000 215.495000 1049.61900 199.712000 773.970000 100.641000 7391.20100 3994.38400 3987.46500 3153.61100 1040.00500 545.977000 398.596000 863.556000 638.170000 1679.17200 173. 600000 5557.23400 14406.2610 754.247000 911.784000 340.221000 3152.58200 2551.71000 1443.43300 6965.63800 2628.60400 1984.22000 3440.34200 64016.2160
GEA8AMY
8622.39200
6091.89300
4484.36900
3633.24600
1391.29700
914.501000
1348.90800
634.152000
2579.29400
234.756000
6653.70800
16005.0060
1080.73300
1350.00100
471.054000
3944.92600
4678.36100
1583.87700
6137.16900
3737.48200
5633.97900
6765.79100
67782.8950

IRELAMD 264.724000 294.53:000 303.740000 113.443000 24.8590000 19. 2290000 88.2770000 21.5100000 138.722000 32.9890000 173.988000 562.569000 53.1240000 32. 3420000 24.5170000 131.776000 55.0900000 131.430000 526.909000 216.818000 323.246000 312.639000 $+192.48000$
rtaly
1045.00700 3543.44100 2329.90300 243.228000 947.124000 28. 4220000 1080.88400 49.3270000 141.296000 57.4320000 3713.98400 11096.0630 445.381000 457.531000 200.370000 2374.02800 1659.29500 562.225000 1212. 77100 1710.35300 2588. 32800 1577. 20300 42793.6040
JAPAM
7194.45600
3137.45500
2605.04100
715.519000
197.734000
117.975000
4100.19100
19.7530000
564.179000
114.421000
2817.43000
28309.3980
313.106000
512.108000
65.5230000
438.131000
5545.18700
228.409000
1937.18100
1072.10400
848.967000
2409.51000
64504.6780
sonyly
488.928000 340.812000 329.068000 337.145000 75. 9030000 86.3420000 202.284000 121.051000 206.064000 54.3760000 853.104000 1245.01700 105.143000 129.692000 57.7320000 471.204000 441.814000 449.360000 1328.20400 643.320000 2003.90500 534.792000 534.792000
11105.2640

SMEDEM 1018.59800 751.381000 747.198000 692.318000 203.803000 136.265000 204.461000 174.267000 211.096000 80.9570000 1646.40900 3346.10300 272.091000 255.595000 117.234000 990.226000 622.541000 564.760000 2510.11200 1338.20400 1972.50800 1188.03500 19164.1640

SUIT2ER
1067.13000 794.101000 700.820002 575.777000 155.161000 168.719000 142.040000 204. 207000 281.375000 200. 319000 1729.64700 1556. 14100 147. 124000 176.950000 94.5730000 521.481000 24.. 079000 366.018000 1257.46400 834.397000 1202.59700 2319.42100 2339.42300
14762.7650
U.
4913.06700 5024.83 AOO 2399.40300 1166.50700 546.197000 303.222000 1570.16700 219.751000 2321.40200 231.524000 3640.60900 10179.47 HO 483.511000 431.715000 204.295000 1052.67000 2681.56600 920.311000 5310.71505 1985. 15900 1786. 98200 Sis 51.26500 55950.5460
U. S.
8010.99700 5172.51000 5112.51800
1285.57200 1285.57200 3465.22600 827.103000 1707.56800 2326.44600 0.0
3490.95700 341.897000 2611.44800 35892.2820 1639.85700 1007.54700 217.180000 2436.04000 5435.30700 1876.89000 7758.65800 7479. 16900 12679.7730 23907.3770
sula
50440.3560 37649.1150 25981.7750 16168.2440 6317.94700 5021.20100 14939.2260 3540.24000 15897.5430 3179.26700 43266.4190 146135.482 1116.61600 7626.03300 2795.19800 21111.5690 28781.0710 12610.8380 55708.0750 30915.6750 59989.0230 59835.2300 655403.543

Table C. 4
Eaployment by ISIC Sector
In the Major Industrialized Countries, 1976

13148	Aestala
10.08cece	144.800030
211.606000	11.013000
60.3500000	16. 25 ceces
61.5508360	15.1500880
$\therefore .16000000$	1.16000000
11.2000000	19.7080400
\$1.1sesece	11.1008630
26.1000000	29.9500500
10.3900000	11.6408000
13.9480060	21.1100s
S8.0scoses	52.0180500
6.41800060	6.05068080
19.0306000	12.7400
-4.4500040	-14.0190060
0.21000300	12.54ences
71.8000000	04.0300800
26. 2903000	11.31090
118.630000	18.3804000
118.610000	66.2000000
81.1000400	01.2300600
101.100000	36.1900800
57.8000000	16.3103080
70.0009000	23.0.0.cese
15.0600000	13.0080008
-195.000000	253.04000
1316.08000	643.048600
-113.000000	197.040040
-52.000000	136.cese0s
271.04000	505.0

casaes $\$ 66.0000 c e$ 265. 360000
101.19 111.69600
116.660000 ? 1060.090 20. 1604008
$111.00 c e c e$ 121.82800000
$\$ 5.228000$ 104.950608
102.510000 $102.57 c c e 0$
$95.096 e 900$ 20.036046
$10.26000 e$ 10.2660060
16.8400000 11.2300000 71. 3700040 S5. ACe日ece
isi.S1cect 111.8
118.8
16.8
18.8 166.84000
78.620000 78.6200005
145.000000 112.000000
6.2 .000000 612.000006
issa.06000
i2s 721.00eces 501.006060
3280.00000
2511.01100
pegasi 221.090600
25. 1800000 25.1500080
$24.6 j c 0080$

 is. 2500000 792.096809
71.6100090 27.5000000 10.8680400
3.1300800 J. 13080000
$8.018 c c e \Delta A$ $3 i .7500000$ 10.1300008
$55.55400 e 8$ S5. $55 c 9686$ 13. 2480000
24.5106060 2.23800006
$\$.628 c 0000$ 3.6286000
18.4160000 1. ifis00ses 11.3600680
6.25060606 10.1960000
16.110409 66. 1300000
32.8600806 19.2100800
15.1680400 \%.000006e日 28,0000600
160.00010 160.080480
318.000600 161.80.880. 507.006400
 20010.0100

6818301
1283.06004 1783.06000
880.960060 111.9114600
111.1500 131.78900

04.98000 | 68. gibeke |
| :--- |
| $68.5180 c e$ | 195.870600

$113.120 c e 8$ 11). 120668 185.100
$212.160 e$ 616.19040
15.614040 $18.81006 e{ }^{2}$
132.806040 285.680000
101.11099 680. 160400
$\$ 11$ $112.860 c e 8$
$\$ 15 . \operatorname{secse}$ $615.8000 e 0$
$131 j .606 e s$ 1313.60060
1197.0606
151.12040 151.120090
.54 .15040 is4.86060 230.000000 1928.00604
3561.00000 3561.00600
1694.00060
1148.0900 1348.00990
$\$ 305.00006$
20556.0104 2issic.0.300

188Lans 212.0008 si. 2809090
 2.21640890
8.6 secece 3. isecceal 0.0760080 5.81860600 10.0ichane i.0sccecent 2.01600608
 $1.19664 \angle 8$ 7.8B6.0.600 1.13860900
11.9768040 11. 18000800 $12.0184 c c e$
$10.0000-c e$ 11.0400000 76.0ceece
169.04000 169.060 .00 60.606390
$20.06 c 9080$ 211.000800
1128.00800

18510.010e

31781
6150.09069 1530.36004 1163.39000 183.166000 8195.62
295.690004 173.720000 18.5508800 31.1060000 2.90060400 3.65000008
36.4160600 36.4106000
19.5200000 15. 2860000
25.2600000 27. 7260000
75.7200000 75.59 encoe 9.98000400 18.3800000
11.6700000 15.0706000
51.7800000 15.3500000 $67.76 c 4800$

99.5040000 | 90.306000 |
| :--- | 80.580080

$59.84 c c e 00$
 15.1060004
131.006080 111.0106000
115.000800 $111.0 c e c=0$
184.038008 1287.00000
 $16018 a t$
165.009006 52. 1000000
14.1004808 11. 3304060 11.3
1.50
2.01
24.4 634.676040 318.810000
$j 18.850000$ 62.113000 592.22004 38.5900000
150.970000 311.830000 65i. 670000 145. 210000 1021.75000 148. 07000 1210.83000 185.940006
180.000000 314.000000 issic.0000 $1710.060 e$
1710.00004 10760.0000 52720.0600

table C. 5

POST-RENNEDY ROUND BASE RATE TARIFES ON INDUSTRIAL PRODUCTS BY ISIC SECTOR IN THE MAJJR INDUSTRIALIZED COUNTRIES
(PER CENT: WEIGHTED BY "WORLD" IMPORTS. EXCLUDING PETROLEUM)

	ALA +	ATA	BLX	CND +	DEN	FIN	FR	GF R	IRE	IT	JPN +	NL	N2	NOR	SWD	SW 2	UR	US	ALL
321	$: 7.9$	18.4	9.9	15.8	9.9	19.9	9.9	9.9	9.9	9.9	7.2	9.9	13.7	11.0	8.6	8.3	9.9	14.8	11.9
322	61.0	37.2	16.7	25.3	16.7	37.7	16.7	16.7	16.7	16.7	13.7	16.7	69.2	22.6	14.4	15.4	16.7	26.9	25.4
323	17.2	6.0	4.0	8.9	4.0	9.9	4.0	4.0	4.0	4.0	8.7	4.0	18.2	4.3	3.4	1.7	4.0	4.1	6.4
324	33.8	. 25.2	12.1	24.2	12.1	17.3	12.1	12.1	12.1	12.1	15.5	12.1	42.9	24.5	13.7	12.6	12.1	8.8	17.5
331	13.9	4.9	3.2	3.2	3.2	1.4	3.2	3.2	3.2	3.2	3.6	3.2	10.4	1.6	0.7	3.8	3.2	2.5	4.0
332	41.1	22.6	8.5	19.3	8.5	8.7*	8.5	8.5	8.5	8.5	7.9	8.5	45.3	7.6	5.2	13.7	8.5	7.4	13.7
341	8.4	12.0	7.5	8.8	7.5	4.6	7.5	7.5	7.5	7.5	5.6	7.5	12.7	2.0	1.9	7.0	7.5	1.7	6.9
342	7.7	3.4	2.4	7.2	2.4	0.9	2.4	2.4	2.4	2.4	0.4	2.4	5.6	2.0	0.2	1.2	2.4	0.9	2.7
35.	6.5	7.3	11.3	7.6	11.3	2.8	11.3	11.3	11.3	11.3	7.1	11.3	13.5	8.5	6.3	1.2	11.3	7.5	8.8
355	12.6	15.0	5.6	11.8	5.6	13.8	5.6	5.6	5.6	5.6	5.6	5.6	8.9	5.8	5.4	1.6	5.6	4.5	7.2
36A	11.4	8.8	5.4	8.3	5.4	7.4	5.4	5.4	5.4	5.4	3.3	5.4	20.7	3.0	3.2	3.3	5.4	7.1	6.6
362	14.9	18.2	9.8	13.1	9.8	21.2	9.8	9.8	9.8	9.8	8.3	9.8	19.7	9.1	8.8	4.4	9.8	11.8	11.5
371	9.5	7.1	6.8	7.0	6.8	5.1	6.8	6.8	6.8	6.8	6.2	6.8	6.8	2.4	5.1	1.8	6.8	5.6	6.2
372	3.6	3.4	2.5	1.6	2.5	0.6	2.5	2.5	2.5	2.5	3.8	2.5	2.5	0.7	0.5	2.5	2.5	1.6	2.3
381	25.8	17.7	7.8	13.7	7.8	9.4	7.8	7.8	?. 8	7.8	6.7	7.8	32.2	7.1	5.6	4.1	7.8	8.3	10.7
382	13.6	10.7	6.4	7.8	6.4	8.6	6.4	6.4	6.4	6.4	7.3	6.4	28.3	8.3	4.9	1.7	6.4	5.4	8.2
383	19.9	18.4	9.9	13.6	3.9	11.0*	9.9	9.9	9.9	9.9	6.8	9.9	22.7	9.1	7.2	1.9	9.9	6.9	10.9
384	19.7	19.1	9.4	5.7	9.4	6.0 *	9.4	9.4	9.4	9.4	5.8	9.4	31.8	6.9	7.5	6.3	9.4	3.6	10.4
38A	9.0	10.6	7.9	7.2	7.9	8.5	7.9	7.9	7.9	7.9	7.1	7.9	17.9	6.6	4.6	2.1	7.9	8.2	8.1
ALL	15.3	13.3	8.2	8.9	8.2	8.5	8.2	8.2	8.2	8.2	6.7	8.2	21.9	7.3	5.7	3.8	8.2	6.7	9.1

EESTIMATED FROM INCOMPLETE DATA.
+PREVAILING RATES, WHICH INCLUDE UNILATERAL REDUCTIONS IN POST-KENNEDY ROUND TARIFE RATES. SOURCE: BASED ON DATA SUPPLIED BY STR.

TABLE C. 6

	MTN OFFER RATE TARIFFS ON INDUSTRIAL PRODUCTS BY ISIC SECTOR IN THE MAJOR INDUSTRIALIZED COUNTRIES (PER (ENT: WEIGHTED BY "NORLD" IMPORTS, EXCLUDING PETROLEUM)																		
	ALA	ATA	BLX	CND +	DEN	FIN	FR	GF R	IRE	IT	JPN+	NL	N2	NOR	SWD	SW2	UK	US	ALL
32:	17.7	15.4	7.2	13.5	7.2	18.5	7.2	7.2	7.2	7.2	7.0	7.2	12.6	9.3	7.9	6.7	7.2	9.6	9.8
322	61.0	37.1	13.3	24.2	13.3	35.8	13.3	13.3	13.3	13.3	13.7	13.3	69.1	21.3	14.2	12.3	13.3	21.7	23.2
323	13.1	5.1	2.2	6.7	2.2	7.2	2.2	2.2	2.2	2.2	8.7	2.2	18.2	3.8	2.8	1.3	2.2	2.8	4.8
324	33.8	24.8	12.1	21.6	12.1	17.2	12.1	12.1	12.1	12.1	15.3	12.1	38.9	21.7	13.6	9.3	12.1	8.7	16.8
331	12.8	3.9	2.5	1.8	2.5	1.1	2.5	2.5	2.5	2.5	3.3	2.5	10.2	1.1	0.5	2.6	2.5	1.3	3.3
332	31.4	21.8	5.6	14.2	5.6	5.5*	5.6	5.6	5.6	5.6	5.2	5.6	44.9	5.1	3.9	9.2	5.6	3.8	10.5
341	3.4	10.1	5.5	5.0	5.5	2.6	5.5	5.5	5.5	5.5	4.2	5.5	12.1	1.5	1.6	4.4	5.5	0.7	5.3
342	7.7	2.1	1.6	1.6	1.6	0.5	1.6	1.6	1.6	1.6	0.2	1.6	5.6	1.9	0.2	0.9	1.6	0.5	1.9
35A	5.9	4.4	7.8	7.2	7.8	1.6	7.8	7.8	7.8	7.8	5.6	7.8	9.4	5.9	4.7	0.9	7.8	4.9	6.3
355	10.4	10.5	3.8	6.4	3.8	13.6	3.8	3.8	3.8	3.8	3.9	3.8	8.9	5.1	5.1	1.4	3.8	2.7	5.5
36A	11.2	5.6	3.9	5.6	3.9	6.3	3.9	3.9	3.9	3.9	2.5	3.9	17.2	2.7	2.6	2.3	3.9	4.4	5.1
362	14.9	13.1	7.6	8.8	7.6	16.4	7.6	7.6	7.6	7.6	5.5	7.6	16.9	7.4	6.7	3.1	7.6	7.9	9.0
371	9.5	6.6	5.3	5.6	5.3	4.1	5.3	5.3	5.3	5.3	4.9	5.3	6.6	1.8	4.0	1.5	5.3	4.2	5.1
372	3.3	2.6	2.1	1.6	2.1	0.4	2.1	2.1	2.1	2.1	3.4	2.1	1.7	0.6	0.4	1.4	2.1	1.0	1.8
381	25.4	10.0	5.4	8.4	5.4	7.7	5.4	5.4	5.4	5.4	4.9	5.4	29.1	4.8	4.1	3.0	5.4	4.9	8.1
382	13.3	6.3	4.4	5.2	4.4	5.6	4.4	4.4	4.4	4.4	4.5	4.4	23.2	5.1	3.5	1.5	4.4	3.4	5.9
383	19.9	15.0	7.9	6.1	7.9	6.0*	7.9	7.9	7.9	7.9	4.4	7.9	21.3	7.2	4.5	1.5	7.9	4.4	8.5
384	18.9	16.2	7.4	4.2	7.4	3.8	7.4	7.4	7.4	7.4	2.6	7.4	31.7	4.4	4.6	5.6	7.4	2.2	8.5
384	8.9	7.1	4.9	4.3	4.9	5.8	4.9	4.9	4.9	4.9	5.2	4.9	16.9	5.4	3.4	1.5	4.9	4.2	5.7
ALL	14.8	10.3	6.0	6.4	6.0	6.4	6.0	6.0	6.0	6.0	4.8	6.0	20.1	5.4	4.3	3.0	6.0	4.3	7.1

-ESTIMATED FROM INCOMPLETE DATA

+ PREVhiling rates, which include unilateral reductions in post-rennedy round tariff rates. SOURCE: BASED ON DATA SUPPLIED BY STR.

Indexes of Nontariff Restrictions by ISIC Sector
in the Major Industrialized Countries
\sim 310 321 322 323 324 331
332 341 341
342 354
358 355 364 362 37% 381 382
383 383
384 384

LnStalal	A HSTELA
0.08600003	0.32999996
0.15899998	0.44599998
0.29979998	0.16324971
0.58219999	0.19129945
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.06699997	0.11690492
0.33899999	0.03358994
0.0	0.0
0.10299999	0.00098999
0.0	0.0
0.0	0.0
0.0	0.0
0.03700000	0.0
0.0	0.0
0.05199995	0.0
0.2099999	0.01999998
0.04100001	0.0

16ti.nI	canada	DEMMAPT	Fimlamo
0.05100002	0.0	0.02200001	0.03200001
0.01499990	0.16000003	0.07300001	0.1589999 a
0.15300995	0.17329997	0.20259494	0.16729999
0.12049497	0.54439998	0.3A669997	0.34819996
0.0	0.0	0.0	0.0
0.92600000	0.41079998	0.0	0.81699941
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.00098990	0.0	0.0	0.00999999
0.11600000	0.00700003	0.0	0.0
0.0	0.0	0.0	0.0
0.141999999	0.0	0.0	0.06400001
0.0	0.0	0.0	0.0
0.09999996	0.0	0.09999996	0.0
0.0	0.0	0.0	0.0
0.09500003	0.0	0.04100001	0.03299999
0.0	0.0	0.0	0.0
0.0	0.09700000	0.0	0.23500001
0.0	0.34200001	0.0	0.0
0.00800002	0.0	0.0	0.0

PuAnCE	ceanafit
1	0.32900000
0.30100000	0.11000001
0.23990000	0.30039996
0.33269995	$0.49 月 49999$
0.0	0.0
10.24869996	0.0
0.0	0.0
0.0	0.0
0.06000000	0.0
0.25999999	0.0
0.04500002	0.0
0.82900002	0.57599998
0.0	0.0
0.26400000	0.01999998
0.0	0.0
0.09999996	0.09999996
0.0	0.0
0.03200001	0.0
0.0	0.0
0.0	0.00700003
0.07800001	0.0
0.21199999	0.0

IEREAMO	1TAL
0.03700000	0.04200000
0.05800003	0.14499998
0.13499995	0.31419497
0.06180000	0.38169998
0.0	0.0
0.0	0.69592994
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.13200003
0.0	0.0
0.15200000	0.33200002
0.0	0.13700002
0.0	0.0
0.09999996	-.09999996
0.0	0.0
0.0	0.06599994
0.0	0. 16200000
0.00599991	0.33099497
0.40899998	0.73799996
0.0	0.10299994

TABLEC. 8
tariff redoctions as proportious of ity

	1	310	3 こ1	322	323	324	331	332	341	342	351
ALA	-0.023	-0.017	-0. 002	0.0	-0.043	0.0	-0.010	-0.063	0.0	0.0	-0.004
ATA	-0.013	-0.001	-0.024	-0.001	-0.013	-0.006	-0.010	-0.007	-0.031	-0.009	-0.031
C凶D	-0.012	-0.007	-0.019	-0.010	-0.018	-0.021	-0.025	-0.043	-0.046	-0.044	-0.004
EC											
BLI	-0.019	-0.022	-0.021	-0.028	-0.015	0.0	-0.008	-0.027	-0.022	-0.009	-0.032
DEy	-0.021	-0.023	-0.030	-0.027	-0.017	0.0	-0.010	-0.027	-0.026	-0.015	-0.030
FR	-0.018	-0.021	-0.C23	-0.030	-0.016	-0.002	-0.009	-0.027	-0.020	-0.012	-0.030
G7:	-0.026	-0.019	-0.026	-0.029	-0.018	0.0	-0.010	-0.027	-0.018	-0.012	-0.032
IRE	-0.019	-0.025	-0.C26	-0.027	-0.034	0.0	-0.007	-0.026	-0.026	-0.009	-0.028
IT	-0.022	-0.018	-0.012	-0.029	-0.010	-0.004	-0.002	-0.027	-0.011	-0.009	-0.033
15	-0.018	-0.021	-0.030	-0.028	-0.021	0.0	-0.008	-0.027	-0.020	-0.013	-0.034
OK	-0.017	-0.025	-0.023	-0.031	-0.016	0.0	-0.009	-0.027	-0.016	-0.012	-0.031
FIM	-0.011	-0.006	-0.013	-0.012	-0.029	-0.001	-0.001	-0.029	-0.032	-0.007	-0.013
JPM	0.0	0.0	0.0	0.0	0.0	-0.006	0.0	-0.025	0.0	-0.001	-0.013
42	-0.009	-0.002	-0.017	-0.001	0.0	-0.024	-0.003	-0.014	-0.003	0.0	-0.017
108	-0.002	-0.005	-0.025	-0.009	-0.008	-0.023	-0.004	-0.023	-0.010	0.0	-0.018
ST0	-0.003	0.0	-0.005	-0.002	-0.008	-0.001	-0.002	-0.013	-0.006	0.0	-0.014
S\#2	0.0	-0.001	-0.015	-0.027	-0.007	-0.030	-0.017	-0.035	-0.022	-0.002	-0.002
OS	-0.004	-0.015	-0.045	-0.040	-0.013	0.0	-0.018	-0.037	-0.003	-0.004	-0.013

table C. 8 (conf.)

	35B	355	361	362	371	372	381	382	383	384	381
ALA	0.0	-0.023	-0.cc 1	0.0	0.0	-0.010	-0.003	-0.003	0.0	-0.007	-0.002
ATA	-0.008	-0.041	-0.028	-0.039	-0.004	-6.011	-0.075	-0.040	-0.034	-0.019	-0.044
CND	0.0	-0.049	$-0 . C 28$	-0.037	-0.012	0.0	-0.049	-0.015	-0.063	-0.008	-0.031
EC											
BLI	0.0	-0.019	-0.c14	-0.017	-0.014	-0.003	-0.021	-0.020	-0.020	-0.029	-0.021
DEY	0.0	-0.022	-0.016	-0.020	-0.016	-0.01\%	-0.022	-0.019	-0.020	-0.012	-0.035
78	0.0	-0.016	-0.021	-0.022	-0.016	-0.005	-0.022	-0.019	-0.019	-0.022	-0.035
GFR	0.0	-0.018	-0.017	-0.021	-0.015	-0.004	-0.023	-0.020	-0.017	-0.020	-0.032
IRE	0.0	-0.018	-0.C14	-0.020	-0.015	-0.014	-0.021	-0.017	-0.021	-0.016	-0.042
IT	0.0	-0.012	-0.005	-0.018	-0.011	-0.004	-0.023	-0.019	-0.017	-0.017	-0.033
WL	0.0	-0.019	-0.011	-0.016	-0.014	-0.007	-0.022	-0.020	-0.020	-0.017	-0.032
OK	0.0	-0.012	-0.CC8	-0.023	-0.015	-0.003	-0.022	-0.021	-0.017	-0.019	-0.018
PII	0.0	-0.004	-0.c09	-0.025	-0.014	-0.004	-0.017	-0.024	-0.045	-0.021	-0.047
JPM	-0.006	-0.004	-0.CO1	-0.022	-0.005	0.0	-0.016	-0.043	-0.029	-0.042	-0.013
N2	0.0	0.0	-0.01c	-0.016	-0.008	-0.048	-0.025	-0.087	-0.012	-0.006	-0.019
M08	0.0	-0.007	-0.004	-0.023	-0.005	-0.002	-0.018	-0.033	-0.016	-0.013	-0.014
SAD	0.0	-0.004	-0.003	-0.020	-0.010	-0.002	-0.012	-0.013	-0.023	-0.029	-0.014
SW2	0.0	-0.003	-0.010	-0.013	-0.004	-0.018	-0.010	-0.003	-0.004	-0.006	-0.004
US	0.0	-0.011	-0.035	-0.041	-0.011	-0.005	-0.025	-0.016	-0.021	-0.008	-0.033

post-kenmedy mont ease rate taripts on imoustalal prodocts by isic sectot in the hajoe induspeialized coometes

	1L4*	ATA	BLI	C\#D	DE:	FII	18	GPR	IPE	19	JPM*	46	18	H08	SUD	Se2	OR	05	126
321	<4. 5	19.6	10.1	19.5	12.1	25.1	11.1	11.6	11.0	8.5	2.3	12.1	15.6	15.6	11.3	9.9	10.1	18.7	12.1
$1<6$	61.5	36.0	16.7	25.2	16.2	37.2	16.7	16.9	16.	16.6	14.4	16.8	52.7	22.9	14.4	15.3	16.6	26.2	19.0
Si3	24.4	8.5	1.7	6.3	2.8	12.8	<. 8	4.5	5.2	1.0	1.5	4.5	16.	6.7	3.7	2.6	2.5	3.6	3.6
324	33.9	24.1	11.4	24.7	11.3	17.7	11.5	11.8	11.9	11.2	16.8	11.3	44.7	25.0	13.7	12.5	12.7	8.9	13.0
131	d. 5	7.9	3.6	4.8	4.5	1.8	4.3	4.8	3.3	1.2	0.2	3.9	11.1	1.9	0.9	5.4	6.2	1.3	2.6
332	39.3	22.9	8.5	:9.4	8.4	8.70	E. 5	6.5	8. 5	8.5	7.8	8.5	38. 2	7.6	5.5	13.1	0. 5	$9.8 *$	10.3
341	0. 8	16.8	9.3	11.9	10.8	8.0	7.9	7.2	10.9	3.7	2.0	8.5	20.9	3.3	3.1	6.6	6.8	0.3	5.8
344	1. ${ }^{\text {c }}$	2.4	2.4	- 5.6	4.8	1.8	3.5	3.4	2.4	2.7	0.1	3.6	1. 2	4.4	0.2	0.9	3.6	1.1	3.0
3SA	6.5	8.4	12.0	7.9	12.2	3.4	11.7	12.1	11.2	12.1	6. 4	12.3	10. 8	9.5	6.5	1.2	12.0	4.1	9.9
155	17.0	16.5	0.3	13.4	6.9	14.6	6.4	6.5	6.4	5.2	5.1	6.6	12.0	7.6	6.8	2.0	5.3	5.4	7.3
164	11.5	10.5	5.5	9.6	6.8	3. 5	7.6	5.9	6.3	3.8	0.9	4.4	13.5	2.9	3.1	3.5	3.5	10.1	6.3
362	14.7	17.2	9.9,	11.2	9.6	27.1	9.7	10.0	9.6	9.7	7.6	9.3	13.7	10.3	9.2	- 5	10.3	10.6	10.4
371	10.9	6.3	* 2	6.9	7.2	5.6	6.7	6.4	7.5	4.7	2. ${ }^{1}$	7.1	6.0	2.2	5.0	2.1	6.4	5.0	5.9
372	5.5	6.7	12	2.2	8.4	1.7	4.8	3.5	8.2	3.3	1.3	5.2	9.3	1.4	1. 1	3.8	2.6	1.5	2.9
381	23.8	19.4	7.7	14.0	7.9	9.7	7.8	7.9	7.6	7.9	6.9	7.8	23.3	6.3	5.3	3.8	8.0	7.3	8.9
382	10. 6	10.8	6.4	6.1	6.4	8.7	E. 1	6.5	6.1	6.5	9.1	6.4	28. 3	8.8	4.9	1. 5	6.4	5.0	6.7
383	21.4	18.5	9.6	12.8	9.3	11.0*	9.7	10.1	9.4	9.9	7.4	9.3	21.0	8.6	1.0	2.0	9.8	6.7	9.8
384	26. 2	24.9	11.1	2.4	8.4	6.0*	1C. 2	10.1	12.0	10.8	6.8	11.0	28.9	3.7	8.6	6.7	9.4	3.2	7.7
384	10.0	13.8	5.8	8.6	10.0	18.6	9.9	9.6	11.2	9.4	6.7	9.2	19.7	8.7	6.0	1.6	6.0	7.5	8.0
46L	15.9	15.9	8.7	6.8	8.9	9.8	E. 8	9.0	9.5	8.0	4.5	9.3	19. 2	6.9	6.4	3.9	7.7	5.4	7.9

- zstiatat froa incoaplete dafa.

SUUACE: gASED GE DATA SOPPLIED BI STR.

POST-KENNEDY ROUND BASE RATE TARIFES ON INDUSTRIAL PRODUCTS BY ISIC SE, TOR IN THE MAJOR INDUSTRIALIZED COUNTRIES
(PER CENT: WEIGHTED BY OWN-COUNTRY IMPORTS FROM NON-INDUSTRIALIZED COUNTRIES, EXCLUDING PETROLEUM)

	ALA +	ATA	BLX	CNO+	DEN	FIN	ER	GF R	I RE	IT	JPN +	NL	NZ	NOR	SWD	SW 2	UR	US	ALL
321	15.8	14.5	6.0	15.6	11.9	18.9	5.4	7.1	8.2	5.3	3.9	9.2	12.0	14.4	9.2	3.1	7.5	8.5	7.2
322	62.5	37.5	17.0	25.2	16.8	37.3	16.8	16.8	16.7	16.5	13.5	16.8	65.6	22.6	14.4	15.8	17.1	27.4	21.5
323	27.5	11.0	6.8	17.0	7.3	11.7	4.0	5.7	6.9	2.7	7.9	7.1	10.9	6.4	6.1	3.2	3.0	6.5	5.6
324	33.8	23.9	11.3	24.2	12.0	17.0	11.2	11.3	11.8	10.1	16.1	10.9	42.4	23.6	13.9	11.8	12.1	9.0	11.8
331	13.9	1.5	2.0	10.0	4.0	0.1	2.4	2.4	2.7	0.9	0.3	2.7	10.9	3.4	0.7	3.2	3.5	9.7	2.
332	41.7	23.3	8.5	19.4	8.4	8.7*	8.5	8.5	8.5	8.5	7.9	8.5	46.4	7.8	5.2	14.0	8.5	9.8*	10.0
341	23.9	8.5	7.6	7.1	9.9	7.8	3.4	5.7	7.4	3.7	2.6	6.7	21.0	2.9	2.7	6.9	2.0	5.0	4.6
342	0.6	1.3	3.3	11.5	0.9	0.7	1.4	1.5	3.5	2.8	0.3	2.3	0.8	2.0	0.0	0.7	1.1	0.9	1.
35A	2.9	4.1	5.2	7.3	7.7	0.4	3.9	7.2	4.9	7.5	4.6	7.2	1.7	0.5	2.5	0.8	6.5	2.3	4.9
355	4.0	3.0	5.6	5.0	3.8	6.2	1.5	2.2	1.7	1.3	0.5	3.0	1.6	4.1	3.8	1.3	1.3	1.0	1.6
36A	8.8	2.5	2.2	7.4	4.6	5.8	3.4	3.1	2.4	1.4	0.3	4.4	17.5	2.2	2.6	3.0	1.6	5.8	3.
362	14.1	21.1	10.2	13.5	11.2	12.6	11.0	11.1	7.6	9.1	7.2	10.1	37.2	15.3	10.0	4.3	10.8	11.3	11.
371	9.3	2.6	5.9	4.7	7.2	6.2	6.5	6.1	7.3	4.8	4.7	6.2	1.0	1.0	2.8	2.0	6.0	3.2	5.
372	1.4	1.5	0.1	0.4	2.6	0.3	0.7	0.5	2.5	0.9	0.8	0.9	4.1	0.2	0.2	7.3	0.7	0.9	0.
381	24.9	18.8	9.0	16.2	8.4	7.9	8.1	8.6	8.5	8.2	7.0	8.1	47.2	5.8	5.2	4.6	8.7	7.8	10.
382	12.4	11.4	6.2	6.2	6.6	8.1	6.8	7.3	6.4	6.9	9.2	6.5	18.7	9.0	4.5	2.4	6.4	5.0	6.
383	24.2	21.4	9.3	13.4	9.5	11.0*	10.5	16.8	10.6	10.1	7.5	9.6	22.0	8.9	7.2	2.0	11.6	6.5	8.
384	12.0	16.1	10.6	6.3	9.6	6.0 *	10.7	7.2	14.0	8.0	0.9	7.5	7.5	0.6	3.5	7.1	7.7	5.0	7.
38A	5.7	11.5	1.6	5.5	9.8	13.5	6.7	7.4	11.8	8.9	4.5	4.6	3.2	12.1	6.5	0.8	2.2	7.4	6.0
ALL	16.6	10.6	3.3	12.3	9.8	8.0	5.7	7.4	7.6	4.5	3.1	7.4	12.1	6.5	6.5	4.0	5.2	8.4	6.

*ESTIMATED EROM INCOMPLETE DATA.
+PREVAILING RATES, WHICH INCLUDE UNILATERAL REDUCTIONS IN pOSt-RENNEDY ROUND tariff RATES.
SOURCE: BASED ON DATA SUPPLIED BY STR.

HTE OFFE: MATE TAEIPES OU IMDUSTEIAL PRODOCTS AY ISEC SECTOR In THE GAJOR IMDOSTALALIZED COOATEIES

	ALA*	121	ELI	CMD*	DEM	P18	18	GP1	IR	15	JP!	16	48	M01	SID	S42	OK	05	14.
321	24.2	16.5	7.7	17. 1	8. 7	23.3	E. 3	8.4	8.1	6.4	2.3	8.1	13.0	12.0	10.6	7.3	7.0	12.1	9.5
322	61.5	35.9	13.4	23.9	13.0	35.6	13.2	13.4	13.2	13.1	14.	13.5	52.5	21.7	14.2	12.3	13.1	20.5	16.0
323	18.9	7.0	2. 1	4. 1	1.2	9.5	1.0	2.3	1.9	0.5	1.5	2. 1	16.	5.9	3.0	2.0	1.0	2.5	2.2
346	31.9	23.4	11.3	22.2	11.3	17.6	11.1	11.7	11.9	10.9	16.	11.3	41.5	22.9	13.7	9.0	12.6	8. 9	12.6
331	7.8	6.2	2.8	2.6	3.5	1.4	3.3	3.7	2.5	0.9	0.2	3.1	10.8	1.5	0.8	3.4	3.3	0.6	1.9
332	30. 5	22.1	5.6	18.3	5.5	5.5	5.6	5.6	5.7	5.6	5.1	5.7	35.5	5.1	4.0	9.2	5.6	4.8*	7.
341	0.8	12.8	6.9	6.7	7.9	4.5	5.8	5.3	8. 1	2.6	2.0	6.3	20.5	2.2	2.1	- 0.3	5.1	0.1	4.3
342	1.9	1.5	1.5	1.0	3.1	1. 1	2.3	2.2	1.5	1.7	0.1	2.3	1.2	4.3	0.2	0.7	2.3	0.7	1.6
354	6. 1	4.9	8. 2	7.5	8.6	1.9	E. 2	8.3	8.0	8.3	5.0	8.4	8.8	7.4	5.0	0.9	8.2	2.5	7.0
355	13.7	11.2	4.2	7.5	4.6	14.2	4.3	4.4	4.3	3.6	3.6	4.4	12.0	6.9	6.4	1.7	3.6	3.7	5.1
361	11.7	6.9	3.9	6.5	5.1	2.6	5.1	4.0	4.7	3.2	0.7	3.3	12.3	2.3	2.7	2.5	2.6	6.0	4.4
362	14. 7	12.5	8.0	7.2	7.3	23.9	7.3	7.8	7. 4	7.6	5.0	7.5	11. 9	7.7	7.0	3.1	7.8	6.1	7.8
371	10.9	6.4	4.6	5.5	5.5	4.2	-. 0	4.7	5.9	3.5	2.0	5.6	5.2	1.7	4.0	1.7	4.8	3.8	4.5
372	4.4	4.7	2.7	2.2	6.9	1.2	3.9	2.9	6.6	2.8	1.2	4.3	4. 1	1.2	0.9	2.2	2.2	0.9	2.3
381	23.5	10. 6	5.4	6.5	5.5	7.8	c. 4	5.5	5.3	5.5	5.1	5.1	19.2	4.4	4.0	2.8	5.5	4.8	6.2
382	14.0	6.4	4.3	4.5	6. 4	6. 1	4.4	4.5	4.3	4.5	4.1	4.3	22.3	5.2	3.5	1.2	4. 2	3.3	4.7
383	21.4	14. 5	7.4	5.9	7.1	6.0*	7.7	8.2	7.2	7.9	4.2	7.0	19.5	6.9	4.5	1.6	7.9	4.3	7.3
384	21.3	22.5	7.9	1.6	7.1	3. $8 *$	7.9	7.8	10.1	8.9	1.6	9.1	28. 1	2.4	5.3	6.1	7.3	2.5	6.0
384	10.4	8.7	3.4	5. 1	6.1	12.8	6.0	5.8	6.5	5.9	5.0	5.5	17.5	7.3	4.6	1.2	3.7	4.0	4.8
4LL	15. 5	12.4	6.2	4.7	6.5	7.3	C. 3	6.4	7.0	5.8	3.0	6.8	16.9	5.1	4.9	3.1	5.5	3.4	5.8

e Esfiatied fion incoaplete data.
 SOURCE: BASED OK DATA SOPPLIED BI STR.

YTN OFFER RATE TARIFFS ON INDUSTRIAL PRODUCTS BY ISIC SECTOR IN THE MAJOR INDUSTRIALIZED COUNTKIES
(PER CENT; WEIGHTED BY OWN-COUNTRY IMPORTS FROM NON-INDUSTRIALIZED COUNTRIES, EXCLUDING PETROLEUM)

	ALA +	ATA	BLX	CND +	DEN	FIN	FR	GER	I RE	IT	JPN +	NL	N2	NOR	SND	SW 2	UK	US	ALL
321	15.5	12.7	4.5	14.4	8.4	18.1	3.9	5.0	5.9	3.9	3.9	6.6	11.2	12.5	9.1	2.6	5.2	5.2	5.7
322	62.5	37.4	13.5	24.1	13.4	35.4	13.3	13.5	13.1	13.3	13.5	13.4	65.2	21.9	14.2	12.6	13.5	22.7	18.3
323	22.5	10.1	5.0	14.8	4.8	8.6	2.5	3.9	1.6	1.0	7.9	5.0	10.9	5.5	5.3	2.4	1.3	4.9	3.9
324	33.8	22.9	11.3	21.6	12.0	17.0	11.0	11.2	11.8	9.2	15.1	10.8	38.3	18.7	13.8	8.5	12.1	8.9	11.4
331	13.0	1.0	1.5	5.6	3.0	0.1	1.6	1.6	2.1	0.6	0.3	2.0	10.6	2.2	0.6	2.2	2.6	4.6	1.6
332	32.2	22.5	5.6	14.3	5.6	5.5*	5.6	5.6	5.6	5.6	5.2	5.6	46.4	5.2	3.9	9.6	5.6	4.8*	7.0
341	23.7	7.7	5.6	4.2	7.5	4.4	2. 5	4.3	5.5	2.6	2.6	5.0	20.6	2.2	2.1	3.9	1.5	2.6	3.4
342	0.6	0.8	1.9	2.8	0.5	0.4	0.9	1.0	2.1	1.7	0.2	1.4	0.8	1.7	0.0	0.5	0.7	0.5	0.7
35A	2.8	2.8	3.8	5.9	5.8	0.3	2.9	5.4	3.7	5.7	3.9	5.1	1.1	0.3	1.6	0.6	4.4	1.3	3.6
355	3.3	2.1	3.6	1.9	2.5	6.1	1.0	1.4	1.1	0.9	0.3	2.0	1.6	3.4	3.7	1.1	0.8	0.7	1.1
36A	8.8	1.7	1.6	5.1	3.3	5.3	2.3	1.9	2.0	1.1	0.2	2.9	17.3	2.2	2.5	2.1	1.3	3.3	2.1
362	14.1	17.6	8.5	7.3	9.1	9.3	9.1	9.0	6.3	7.7	5.5	8.0	34.9	13.8	7.7	3.1	8.8	6.8	8.6
371	9.3	2.4	4.3	4.2	5.7	4.1	4.9	4.5	5.9	3.6	4.0	4.6	1.0	0.8	2.2	1.6	4.3	2.5	3.8
372	1.3	1.3	0.1	0.4	2.1	0.2	0.6	0.4	1.9	0.8	0.8	0.8	1.8	0.2	0.2	3.6	0.6	0.6	0.6
381	24.5	± 1.9	6.3	9.8	5.7	6.0	5.4	5.9	6.1	5.5	5.4	5.7	46.3	4.5	4.0	3.2	6.5	4.8	7.5
382	11.9	7.1	4.0	3.2	4.6	5.6	4.8	4.9	4.4	4.7	4.8	4.5	11.6	5.5	3.3	1.7	3.6	3.3	4.4
383	24.2	18.3	7.2	4.1	7.6	6.0*	8.2	8.8	8.6	8.3	4.4	7.3	21.0	7.4	4.6	1.6	9.7	4.5	5.9
384	10.2	11.9	7.4	3.5	8.4	$3.8 *$	8.8	5.2	11.6	6.1	0.6	6.2	7.5	0.5	2.3	5.4	5.0	2.2	5.4
38A	5.7	8.5	0.9	3.7	5.9	9.8	4.2	4.5	6.9	5.3	3.7	2.9	3.1	9.4	4.5	0.6	1.3	4.0	3.7
ALL	16.3	9.0	2.4	10.1	7.2	6.4	4.2	5.5	5.5	3.2	2.7	5.5	11.4	5.6	5.6	3.1	3.8	5.8	5.0

estimaied from incomplete data.

+PREVAILING RATES, WHICH INCLUDE UNILATERAL REDUCTIONS IN POST-RENNEDY ROUND TARIFf RATES.
SOURCE: BASED ON DATA SUPPLIED BY STR.

PERCENTAGE TARIFF REDUCTIONS ON INDUSTRIAL PRODUCTS OFEERED BY THE MAJOR
INDUSTRIALIZED COUNTRIES IN THE MTN, AS OF APRIL 15, 1979
(Weighted by own-country imports froy other industrialized countries, excluding petroleum

	ALA +	ATA	BLX	CND ${ }^{+}$	DEN	FIN	FR	GF R	I RE	IT	JPN*	NL	N2	NOR	SWD	SW 2	UR	US	ALL
321	1.2	15.8	23.8	12.3	28.1	7.2	25.2	27.6	26.4	24.7	0.0	28.1	16.7	23.1	6.2	20.2	24.8	35.3	21.3
322	0.0	0.3	19.8	5.2	19.8	4.3	21.0	20.7	19.5	21.1	0.0	19.6	0.4	5.2	1.4	19.6	21.1	21.8	15.8
323	22.5	17.6	43.2	30.2	57.1	25.8	64.3	48.9	63.5	50.0	0.0	53.3	0.0	11.9	18.9	23.1	60.0	30.6	38.4
324	0.0	2.9	0.9	10.1	0.0	0.6	0.9	0.8	0.0	2.7	2.4	0.0	7.2	8.4	0.0	28.0	0.8	0.0	3.2
331	8.2	21.5	22.2	45.8	22.2	22.2	23.3	22.9	24.2	25.0	0.0	20.5	2.7	21.1	11.1	37.0	21.4	53.8	26.6
332	21.5	3.5	34.1	26.3	34.5	36.8*	34.1	34.1	32.9	34.1	34.6	32.9	7.1	32.9	27.3	29.8	34.1	$51.0 *$	28.6
341	0.0	23.8	25.8	43.7	26.9	43.8	26.6	26.4	25.7	29.7	0.0	25.9	1.9	33.3	22.6	34.8	25.0	66.7	26.8
342	0.0	37.5	37.5	82.1	35.4	38.9	34.3	35.3	37.5	37.0	0.0	36.1	0.0	2.3	0.0	22.2	36.1	36.4	47.9
354	6.2	41.7	31.7	5.1	29.5	44.1	29.9	31.4	28.6	31.4	21.9	31.7	18.5	22.1	23.1	25.0	31.7	39.0	29.0
, 55	19.4	32.1	33.3	44.0	33.3	2.7	32.8	32.3	32.8	30.8	29.4	33.3	0.0	9.2	5.9	15.0	32.1	31.5	30.0
36%.	0.8	34.3	29.1	32.3	25.0	25.7	32.9	32.2	25.4	15.8	22.2	25.0	8.9	20.7	12.9	28.6	25.7	40.6	29.8
362	0.0	27.3	19.2	35.7	24.0	11.8	24.7	22.0	22.9	21.6	34.2	19.4	13.1	25.2	23.9	31.1	24.3	42.5	24.3
371	0.0	5.9	25.8	20.3	23.6	25.0	25.4	26.6	21.3	25.5	i6.7	21.1	13.3	22.7	20.0	19.0	25.0	24.0	23.5
372	20.0	29.9	15.6	0.0	17.9	29.4	18.8	17.1	19.5	15.2	7.7	17.3	55.9	14.3	18.2	42.1	15.4	40.0	19.3
331	1.3	46.4	29.9	39.3	30.4	19.6	30.8	30.4	30.3	30.4	26.1	30.8	17.6	30.2	24.5	26.3	31.3	34.2	30.8
382	1.4	40.7	32.8	26.2	31.3	29.9	31.3	30.8	29.5	30.8	51.6	32.8	21.2	40.9	28.6	20.0	34.4	34.0	30.4
383	0.0	21.6	22.9	53.9	23.7	45.5*	20.6	18.8	23.4	20.2	43.2	24.7	7.1	19.8	35.7	20.0	19.4	35.8	25.8
384	4.1	9.6	28.8	33.3	15.5	36.7*	22.5	22.8	15.8	17.6	76.5	17.3	2.8	35.1	38.4	9.0	22.3	21.9	21.1
384	1.9	37.0	41.4	40.7	39.0	31.2	39.4	39.6	42.0	37.2	25.4	40.2	11.7	16.1	23.3	25.0	38.3	46.7	39.5
ALL	2.7	22.1	28.5	30.9	26.2	26.2	27.8	28.2	26.3	26.7	32.8	27.2	12.3	25.5	24.4	21.2	28.0	37.2	27.2

*ESTIMATED FROM INCOMPLETE DATA.
+USING PREVAILING RATES, WHICH INCLUDE UNILATERAL REDUCTIONS IN POST-XENNEDY ROUND TARIFF RATES
SOURCE: BASED ON DATA SUPPLIED BY STR.

PERCENTAGE TARIFF KEDU゙こTİVS UN IVDUSTRIAL PRODUKTS OFFERED GY THE MAJOR IVLUSTRIALITED JUNTRIES IN THE MTN，AS OF APRIL 15， 1979
，AEIGH：ED GY JW．－SOLNTRY IMPURTS IRJM NON－INDUSTRIALIZED COUNSRIES，EXCLUDING PETROLEUMI

	A14＊	AIA	BLX	： $20+$	JEN	FIN	FR	GFR	$I^{\text {r }}$ ．	IT	JPN +	NL	N2	NOR	Sid	$\sin 2$	UR	US	ALL
3：	1.9	12.1	25.0	7.7	29.4	4.2	27.8	29.6	28.0	26.4	0.0	28.3	6.7	13.2	1.1	16.1	30.7	38.8	20.7
ここ	0.0	0.3	20.6	4.4	20.2	5.1	20.8	19.6	21.6	19.4	0.0	20.2	0.6	3.1	1.4	20.3	21.1	17.2	14.9
93	：8．5	8.2	26.5	12.9	34.2	26.5	37.5	31.6	76.8	63.0	0.0	29.6	0.0	14.1	13.1	25.0	56.7	24.6	28.9
3：4	0.0	4.2	0.0	10.7	0.0	0.0	1.8	0.9	0.0	8.9	6.2	0.9	9.7	20.8	0.7	28.0	0.0	1.1	3.2
331	6.5	33.3	25.0	44.0	25.0	U． 0	33.3	33.3	22.2	33.3	0.0	25.9	2.8	35.3	14.3	31.3	25.7	52.6	33.5
332	22．8	3.4	34.1	26.3	33.3	36．8＊	34.1	34.1	34.1	34.1	34.2	34.1	0.0	33.3	25．C	31.4	34.1	51．0＊	29.7
341	0.8	9.4	26.3	40.8	24.2	43.6	26.5	24.6	25.7	29.7	0.0	25.4	1.9	24.1	22.2	43.5	25.0	48.0	27.6
$3: 2$	0.0	38.5	42.4	75.7	44.4	42.9	35.7	33.3	40.0	39.3	33.3	39.1	0.0	15.0	0.0	28.6	36.4	44.4	43.2
354	3.4	31.7	26.9	19.2	24.7	25.0	25.6	25.0	24.5	24．0	15.2	29.2	35.3	40.0	36.0	25.0	32.3	43.5	26.5
355	17.5	30.0	35.7	62.0	34.2	1.6	33.3	36.4	35.3	30.8	40.0	33.3	0.0	17.1	2.6	15.4	38.5	30.0	33.9
3 64	0.0	32.0	27.3	31.1	28.3	8.6	32.4	38.7	16.7	21.4	33.3	34.1	1.1	0.0	3.8	30.0	18.8	43.1	33.4
－62	0.0	16.6	16.7	45.9	18.8	26.2	17.3	18.9	17.1	15.4	23.6	20.8	6.2	9.8	23.0	27.9	18.5	39.8	22.7
3.1	0.0	7.7	27.1	10.6	20.8	33.9	24.6	26.2	19.2	25.0	14.9	25.8	0.0	20.0	21.4	20.0	28.3	21.9	23.8
272	$\bigcirc .1$	13.3	0.0	0.0	19.2	33.3	14.3	20.0	24.0	11.1	0.0	11.1	56.1	0.0	0.0	50.7	14.3	33.3	16.2
381	1.6	36.7	30.0	39.5	32.1	24.1	33.3	31.4	28.2	32.9	22.9	29.6	1.9	22.4	23.1	30.4	25.3	38.5	26.0
382	4.0	37.7	35.5	48.4	30.3	30.9	29.4	32.9	31.3	31.9	47.8	30.8	38.0	38.9	26.7	29.2	43.8	34.0	34.8
383	0.0	24.5	22.6	69.4	20.0	45．5＊	22.6	18.5	18.9	17.8	41.3	24.0	4.5	16.9	36.1	20.0	16.4	30.8	27.9
384	15.0	25.1	26.0	44.4	12.5	36．7＊	17.8	27.8	17．1	23.7	33.3	17.3	0.0	16.7	34.3	23.9	35.1	56.0	24.8
384	0.0	26.1	43.8	32.7	39.8	27.4	37.3	39.2	41.5	40.4	17.8	37.0	3.1	22.3	30.8	25.0	40.9	45.9	38.9
ALL	1.9	14.9	26.9	18.5	26.1	2C． 2	26.6	26.4	28． 3	28.8	11.7	25.3	5.4	14．3	12.8	23.8	27.9	31.2	24.8

－ESTIMATED FROM INCOMPLETE DATA．
\because－IVG PREVAILING RATES，WHICH INCLUDE UNILATERAL REDUCTIONS IN POST－KENNEDY RCUND TARIFE RATES．
SここRCE：BASED ON DATA SUPPLIED GY STR．

APPENDIX D

Fixed Exchange-Rate Results

The results reported in these tables refer to different runs of the model as noted, under conditions of fixed exchange rates.

The trade data in Tables D.1, D.2, D.7, and D. 8 are in millions of dollars. The employment results are in thousands of man-years in Tables D.3, D.5, D.6, and D. 9 and in percentage changes in Tables D.4 and D. 10. (163)

TABLED． 1

CYANGES IN EXPORTS UNDER FIXED LXCHAAGE RATES RY ISIC SFCTOR IV THE majOR INDUSTRIALIzED CUOMTRIES ［TE TC TARTPF REDUCTIONS IM THE ATM

	1	313	321	322	323	324	331	332	341	342	351	358
A：	7．＊	0.1	－5．9	0.1	11.7	0.2	0.8	0.1	－0．1	0.2	8.5	-10.4
niA	U． 5	4.7	29.3	18.6	2.0	10.5	11.9	3.5	20.7	1.8	18.3	8.3
$\therefore 0$	14.6	11.2	2.0	11.2	5.7	7.9	31.2	0.2	104.0	2.1	18.8	25.4
ここ	53.9	451.2	502.1	505.4	94.7	47.3	27.4	131.1	122.5	50.7	1030.8	114.7
$3 i x$	3.3	57.4	143.0	80.8	10.4	2.5	4.5	23.2	33.4	6.1	173.7	-11.3
Ė，	4.5	40.0	14.9	23.2	$\therefore 0.0$	2.7	2.1	10.5	5.0	1.6	20.8	5.3
ris	1＋． 5	54.7	67.6	$\therefore 9.7$	13.6	9.0	5.0	9.6	14.4	8.4	134.2	28.3
UF：	$\because 0$	3ヵ．2	171．9	120.0	23.4	11.5	10.1	45.2	31.4	13.9	322.2	27.9
CFE	1．4	17.7	12． 1	11.8	2.9	1.5	0.3	0.7	1.7	0.9	9.7	0.7
iT	7.1	25.4	20.4	73.0	10.1	12．1）	1.6	22.2	2.4	4.1	57.8	15.2
NL	17．4	113.1	118． 5	91.2	12． 5	6.1	2.6	11.8	26.8	5.8	200.0	23．1
Un＇	2.4	42.2	35．0	35.7	11.7	2.1	1.3	7． 9	7.4	9.9	112.5	25.4
E®N	0.	1.4	1.6	15.0	R． 0	4.0	4.9	2.4	15． 5	0.6	4.4	1． 2
J？	C．4	－0．j	－27．9	1.9	-0.8	－3．0	0.5	1.5	－2．7	0.9	41.7	0.7
$x z$	J． 0	1.9	11.3	1.0	0.6	－0．0	0.4	0.3	0.5	0.0	0.4	0.0
N）${ }^{\text {i }}$	1.9	1.8	4.5	3.5	1.4	0.3	0.9	2.0	6.0	0.2	10.0	2． 1
jd山	U． 9	0.5	2.0	4.1	1.7	0.3	5.5	7.5	7.2	1.0	15.2	0.7
Sd3	0.4	0.8	10.7	13.7	0.3	0.9	1.4	2.2	2． 9	2.6	36.6	－0．6
J；	59.2	4． 2	－6．9	14.7	2.5	－0．3	19.4	8.3	－4．1	9.5	130.6	28． 0
rJIAL	147．1	484.1	612.9	589.2	127.9	68.0	104.2	159.2	272．3	69.6	1315.2	170． 1

	355	$36 \wedge$	$3 \in 2$	371	372	381	382	383	384	381	rot
Ain	0.3	1.6	C. 1	-1. 6	38.1	2.5	-0.0	1.1	1.2	9.6	71.5
ara	9.0	9.0	2.4	26.2	6.0	23.2	47.1	25.9	19.7	57.2	350.9
Eyd	13.3	22.8	2.4	8.3	27.3	16.7	58.2	31.0	109.6	196.8	720.3
Eこ	207.7	117.3	+¢.8	304.1	91.0	446.2	601.0	451.5	791.3	1016.6	7303.9
SLX	27.6	13.2	12.4	131.7	25.4	50.1	63.9	51.3	142.6	137.4	1186.5
DEN	2.5	4.2	1.0	4.3	$2 . t$	12.3	34.8	14.7	7.9	44.8	270.0
FR	50.9	16.0	10.0	56.4	12.6	70.2	110.9	71.1	167.0	131.6	1135.7
G:8	33.2	35.4	12.1	65.5	20.1	156.2	228.8	167.8	289.8	269.8	2179.8
IEE	2.9	2.4	0.5	0.4	2.5	4.9	5.8	4.5	1.8	13.1	99.9
12	20.1	21.8	4.5	9.2	3.2	61.3	41.0	30.2	45.4	72.4	569.5
λi	20.3	10.5	4.6	27.5	18.6	36.0	53.2	59.6	54.9	204.6	1115.2
JK	24.3	14.4	4.6	9.2	6.1	55.3	62.7	52.4	81.9	142.9	747.3
PIN	0.4	0.8	C. 8	3.5	2.5	6.6	13.6	8.3	16.0	9.8	121.5
JPV	18.1	11.2	1.9	-38.4	-1.2	53.6	-0.5	101.6	122.7	105.7	389.5
XZ	0.1	0.1	C. 1	0.2	8.8	0.9	1.5	0.4	0.4	6.0	35.6
nje	1. J	2.2	C. 2	7.5	11.5	7.6	9.8	6.4	23.5	12.2	116.6
in	4.3	2.4	1.3	18.4	5.7	25.8	42.9	38.3	81.8	31.6	299.0
3d 2	1.3	1.6	0.6	0.8	4.8	16.9	14.3	17.8	2.2	65.9	198.2
33	18.5	17.6	t. 6	-1.9	5.3	72.0	39.4	124.1	152.6	246.5	946.6
iJIAL	273.5	187.1	66.2	326.9	199.9	672.3	827.2	806.5	1315.9	1757.8	10553.5

TABLED. 2

	1	310	321	322	323	324	331	332	341	342	354	358
ALA	5.7	4.6	0.6	-0.3	0.9	-0.6	2.7	9.3	0.3	-1.0	-0.1	0.0
Ara	1.0	-1.2	22.4	-0.6	4.8	0.7	1.0	-0.7	7.3	0.7	36.2	9.2
CND	b. 6	8.8	16.1	7.6	4.4	5.2	16.8	18.5	36.1	49.6	-8.5	-1.9
E:	238.5	427.5	427.8	363.8	83.6	-4.2	43.6	116.8	196.3	24.6	1161.3	-44. 4
BLX	26.8	38.5	87.3	39.4	5.4	-0.1	3.2	14.7	20.0	1.2	90.7	-2. 4
DEN	12.6	13.8	21.2	9.1	9.3	-3.4	2.9	4.2	9.0	1.7	31.6	-4.6
FR	26.1	57.7	60.3	65.4	11.3	0.6	7.8	33.4	35.5	7.2	225.3	-2. 2
GFR	104.0	85.9	04.9	133.6	25.8	-3.9	13.3	31.6	54.0	4.8	313.4	-11.8
IRE	3.7	7.0	11.7	7.1	1.3	-0.2	0.5	1.0	3.3	0.3	14.2	-0. 1
IT	46.1	52.5	38.3	16.8	12.3	0.0	1.3	3.2	11.5	0.9	176.3	-16.9
$N L$	41.7	53.8	78.6	53.4	8.6	-0.1	5.0	15.5	22.7	3.1	127.1	7.2
UK	27.4	118.3	35.7	44.0	9.5	-0.2	9.6	13.3	40.3	5.4	182.7	-13.4
PIS	0.8	0.6	7.2	2.0	2.7	-0.0	0.6	1.2	3.0	0.3	7.9	-2. 3
Jア:	-25.4	-0.5	0.3	-0.2	-0.9	1.3	-3.1	5.1	0.8	-0.4	58.7	24.7
M2	0.3	0.1	3.1	-0.0	-0.0	0.4	0.1	0.0	0.2	-0.4	8.6	-0. 3
NJP	-2. 1	0.3	6.5	2.6	0.6	0.2	0.7	4.7	2.7	-0.5	11.6	-1. 1
SHD	-5.3	-1.3	4.6	0.2	1.2	0.0	1.2	3.1	2.0	-0.7	21.6	-3.0
Sill 6	-2.7	-0.2	7.6	23.5	-1.2	8.3	2. 2	12.4	6.7	-0.8	5.3	-0. 1
15	-34.8	46.4	37.0	174.9	13.2	1.6	57.0	0.0	14.0	0.6	62.7	-11.6
IJTAL	233.0	485.0	533.4	578.5	109.3	12.8	122. 8	170.5	269.6	72.1	1365.3	-30.8

TABLE D. 2 (COAT.)

	355	364	362	371	372	381	382	383	384	381	rot
ALA	16.9	-0.7	-0.3	0.2	0.8	-1.7	4.5	-4.0	17.5	0.4	55.9
ara	15.0	10.3	2.7	0.7	3.9	67.8	38.8	33.0	23.9	25.8	303.5
Cad	80.6	19.5	7.7	7.6	1.1	137.6	68.6	180.9	61.3	53.2	777.5
E:	130.9	93.2	40.0	251.0	108.8	318.7	456.5	325.7	770.1	603.3	6188.4
BLX	10.2	8.8	3.2	24.7	34.2	28.7	46.5	28.3	97.5	46.7	653.4
DEM	3.8	3.8	1.3	7.3	3.1	11.2	17.4	13.7	12.6	16.6	201.4
FR	25.7	29.0	8.9	51.9	13.2	70.1	99.5	68.2	206.7	131.3	1232.6
GPR	46.4	39.0	12.3	78.9	31.2	87.2	105.4	90.3	218.5	185.1	1739.8
IRE	1.4	0.9	0.5	2.5	0.8	1.9	6.0	4.3	3.7	11.6	83.3
17	10.8	1.7	4.4	33.1	5.4	30.6	43.8	28.6	28.4	69.3	598.3
WL	14.9	5.5	4.1	24.4	12.5	39.2	46.4	47.9	49.1	52.0	712.8
UK	17.7	4.6	5.3	28.2	8.3	49.8	91.7	44.4	153.6	90.8	966.8
PIN	0.0	0.8	0.6	4.6	1.1	5.7	19.4	20.1	22.2	18.1	116.5
JP ${ }^{\text {d }}$	2.1	-1.8	2.1	3.6	5.7	9.5	60.3	37.7	117.0	50.1	346.7
$N 2$	-0. 8	0.6	0.3	0.5	2.4	5.2	13.4	1.9	1.7	2.8	40.0
WJi	0.2	0.1	0.9	2.6	2.6	10.3	32.4	9.1	30.5	4.2	119.2
310	0.5	0.1	1.9	12.4	4.2	11.1	28.7	34.2	88.9	10.5	216.1
SH2	0.3	2.3	C. 9	4.4	5.4	4.5	3.0	1.9	3.7	5.7	93.1
05	58.6	82.5	12.7	31.2	26.1	132.1	121.8	223.3	210.3	1105.4	2364.8
rJial	304.4	206.9	69.5	ミ18.9	161.9	700.7	847.3	863.8	1347.0	1879.6	10621.7

TABLED. 3
absjluie cuanjes is eafloyyent jyoer piyej exchange rates el ISIC SfCTCR IK the MAJOR ivDJSTRIALIzED COUMTBIES

	1	310	321	322	3:	324	311	332	341	342	354	358	355	364	362
124	1.082	0.477	-0.237	0.362	0.119	0.118	-0.127	-0.222	0.002	0.049	0.143	-0.092	-0.571	0.079	0.015
Ara	1.3 .9	-0.070	3.347	2.010	1.235	3.710	0.365	0. 285	0.807	0.079	0.063	-0.013	-0.094	0.018	0.059
こ®0	2.521	0.204	-3.355	0.039	c. 272	0.341	0.499	-0.416	1.870	-1.630	0.349	0.226	-1.392	0.176	-0.161
EC	0.997	12.004	38.725	24.091	3. : 5 t	3.606	0.341	1.952	1.350	1.697	13.529	0.623	5.709	2.684	2.584
8:1	1.303	1.420	9.232	5.363	0.467	0.192	0.730	0.216	1.655	0.339	6.575	-0.275	0.582	0.367	1.269
DEV	2.623	1.405	1. 488	1.566	J. 1cp	0.170	0.108	0.665	0.095	0.046	0.438	0.042	0.045	0.050	0.051
12	5.558	1.058	4.344	2.739	$0.6<9$	0.725	-C. 189	-9.450	-0.271	0.120	-0.048	0.353	1.624	-0.342	0.225
682	$-3.7+t$	3.5*J	13.340	3.362	0.102	0.720	0.338	1.319	0.506	0.507	A. 148	0.149	1.499	0.008	0.623
IER	2. 370	0.537	0.976	0.605	ग. 190	O.043	0.010	0.013	0.021	0.054	0.176	0.012	0.062	0.123	0.037
IT	-5.270	0.805	6.300	0.893	0.50	1.167	0.219	1.925	-0.174	0. 160	-3.725	0.126	0.936	1.663	0.162
4	4.372	2.103	4.430	2.061	0.250	0.231	0.116	0.281	0.61 J	0.196	3.177	0.075	0.496	0.251	0.167
UK	-1.336	1.134	1. 754	0.9+5	0.2 Cl	0.296	-0.492	-7.018	-1.142	0.276	-1.112	0.141	0.475	0.563	0.050
PIM	0.3J9	-0.679	0.375	1.151	0.193	0.273	0.282	0.157	0.444	0.016	0.054	0.010	0.067	0.001	0.038
JPY	4.300	$-1.3) 9$	-2.844	3.207	-0.226	-0.161	J. 423	-0.086	0.021	0.034	0.047	-0.167	0.627	1.008	0.076
12	J.341	0. 629	3.401	0.13)	ग. C=1	-0.013	0.345	0.015	0.019	0.020	-0.130	0.002	0.054	-0.008	-0.006
101	J. 314	-0. 587	0. 251	0.227	J. Cl^{30}	0.014	0.032	-0.028	0.145	0.018	0.160	0.017	0.057	0.080	-0.020
5\#0	0.389	-0.236	0.159	0.224	0.659	0.014	0.346	9. 318	0.197	0.060	0.237	0.000	0.278	0.126	0.021
302	J. 362	-0.155	0.577	J. 120	0.106	-0.176	-0.039	-7.184	-0.010	0.239	1. 562	-0.006	0.086	0.305	0.023
JS	0.332	-1.171	-4.494	-5.969	-0.443	0.167	-1.550	J. 554	-0.839	0.5.37	0.741	0.144	-1.027	-1.980	-0.230
rOTAL	20.734	9.446	35.605	22.957	3.858	4.951	1. 467	4.343	3.960	0.020	16.854	0.744	3.794	2.191	2.400

2ABIE 2． 3 （COMT．）

	311	372	دH1	392	392	389	381	2	4	5	6	7	B	9	909
124	－J． 319	0.530	J． 1.6	－0．021	7.116	－0．255	0.376	0.196	0.009	0.059	－0．128	0.043	0.059	－0．335	1.735
ATA	1． 229	J． 11	－2．377	2.369	C．E． 2	0.177	2.776	0.106	－0．125	J． 144	－1．658	－0．192	－0．314	－2．603	9.563
ごD	－0．1＋5	9．	－2．715	1.611	－1．457	1.640	0.204	0.924	－0．24	0.962	－1．429	－0．223	－0．043	－3． 585	3.578
EC	3.374	2.858	12．078	25.239	17．924	16.746	35.685	4.417	－1．693	－6．084	－24．318	－1．471	－4．568	－44．151	169.510
bly	4． $3<7$	0.775	2．tid	2．411	2.463	3.565	2.140	3.747	0.041	－0．838	－2．650	0.529	0.037	－5．6c8	1.139
2と】	0.157	J． 4.1	2． 346	1.553	0．633	0.124	1． 776	0.018	－0．004	－0．214	－ 1.076	－0．137	－0．269	$\because .807$	9.319
PE	J． 325	0.433	0.920	4.930	2.370	2.978	3.229	1.136	－0．321	－0．304	－4．420	－0．581	－1．052	－t．900	18.561
6FE	3． 300	0． 9 ：6	5.492	11.211	8． 10	6.676	15.137	1.345	－0．538	－2．432	－7．797	－0．817	－． 431	－i3．082	54.571
こ凶®	J．J4 3	J． 135	0.2 ± 9	0.156	0． 165	0.342	0.481	2.106	0.026	0.004	－0．146	0.135	0.354	－0．674	6.616
17	U．$\rightarrow 1$	3．． 32	1.972	1．$+2^{\circ}$	1.076	2.134	2． 504	ग． 583	－0．361	－1．284	－2．925	－0．374	－1．377	－3．282	12.462
Vi	0.522	0.353	0.454	2．0． 6	1．101	1.306	3.490	1.094	0.032	－0．471	－1．448	0.568	0.501	－4．530	23.345
UK	－J． 354	0.103	$0.5+7$	1.475	1．fag	－0．073	6.067	J． 587	－0．588	－0．434	－3．857	－0．794	－1．092	－7．267	－1．503
PIV	0．J：6	0.453	J． 117	0.511	3.071	0.312	0.236	0.028	－0．041	－0．095	－0．492	－0．021	－0．103	－1．077	2.617
JPM	－J．539	0.271	3．J．B	－0．797	4． E ¢ 2	2.028	4.310	－7．102	－0．09 1	－1．012	－3． 159	－0．275	－0．255	－3．738	7.416
± 2	－ 0.314	0.150	－0．121	－3．3．3	0.104	0.049	0.242	J． 519	－0．005	0.085	－0．088	0.018	－0．0．0	－0．298	1.231
108	J． 230	0.197	－－． 10	J． 191	0.116	0.618	0.365	J． 327	－0．035	－0．084	－0．568	－0．077	－0．105	－1．147	1.363
3 D	U． 7 ¢	0.138	1.345	1.973	1． $\mathrm{C}^{6} 7$	1.725	1.111	0.102	－0．032	－0．239	－0．851	0.032	－0．121	－2．507	6.854
j \mathbf{z}^{2}	J． 322	0.177	1．6s	0.716	$1.2 F 6$	0.051	2.614	J． 195	－J． 092	－0．139	－0．588	－0．181	－0．273	－1．036	6.254
JS	-3.813	－0．610	-1.850	0.105	－7．cau	1.167	－12．976	-3.762	－0．887	0.932	－10．025	－1．986	－5．220	－7．365	－47．121
rutai	i1．）＜2	4.6 .31	11．100	32.033	24.538	24.507	39.745	5.469	－3．226	－5．462	－43． 305	－4．334	－10．950	－67．542	158.000

TABLE D.4

perievtacf cranges in eqployneyf lyoer fiyed exchayge eates UY ISIC SFCTOR IN THE MAJOR IMDUSTBIALIZLD COUMTEIES

	1	310	321	322	$32 ?$	324	331	332	341	342	354	358	355	364	362
464	0.23\%	0.136	-0.341	0.100	5.18C	1.043	-0.237	-0.827	0.005	0.066	0.246	-1.528	-2.999	0.179	0.185
ATA	J. 633	-0.ud4	3.946	4.492	3.fst	3.910	3.291	0.950	2.549	0.286	0.119	-0.217	-0.741	0.041	0.468
: 10	J. +15	J. 377	-0.330	0.518	2. PCP	1.689	0.738	-0.753	1.290	-1.599	0.367	1.129	-4.599	0.377	-1.129
EC	J. 370	0.410	1.844	1.695	1.789	0.809	0.124	0.739	0.178	0.155	0.621	0.225	1.158	0.236	0.673
BLX	1. 317	1.362	8.832	9.432	7. $C: C$	1.610	2.881	1.419	5.338	0.767	7.632	-2.062	7.122	0.675	3.973
0\&U	1.170	1.477	'. 272	7.457	9.C39	5.393	0.710	3.320	0.709	0.124	1.502	1.270	1.019	0.177	1.337
78	J. 41	J. 171	1.202	1.096	1. $3 \leq 8$	0.899	-0.110	-0.437	-0.221	0.054	-0.012	0.250	1.829	-0.173	0.303
UPR	- 2.215	0.635	2.514	0.923	1. $¢$ ¢	1.116	0.172	1.126	0.288	0.233	1.204	0.417	1.129	0.003	0.604
182	1.2 .2	$0.4>3$	4.652	4.031	4.687	2.289	0.254	0.313	0.358	0.509	1.749	0.632	2.949	1. 369	1.098
17	-J. 130	c.. ${ }^{\text {cos }}$	1.044	1.314	1. 159	0.803	0.219	1.420	-0.132	0.105	-0.774	0.375	0.784	0.535	0.177
W	1.350	1. 170	4. 125	8.501	2.63C	4.090	0.320	1.441	2.086	0.252	0.202	0.748	2.645	0.794	1.661
UR	-2.233	U. $: 40$	0.336	0.279	0.717	0.340	-0.386	-0.015	-0.504	0.082	-0.252	0.377	0.400	0.255	0.076
P14	0.331	-0.110	1. 364	3.303	5.752	4.496	0.728	1.501	0.800	0.049	0.220	0.324	1.191	0.005	0.872
JP\%	J. 376	- 0.007	-0.240	0.035	-C.412	-0.405	0.367	-0.039	0.005	0.006	0.008	-0.306	0.406	0.190	0.089
42	0. +37	0.039	2.148	0.644	0.644	-0.224	0.253	0.232	0.179	0.106	-0.917	0.219	0.950	-0.092	-0.250
HOE	0.330	-0. 166	1.779	2.004	2.517	0.661	0.131	-0.271	0.540	0.043	0.77	0.618	1.622	0.647	-0.800
S4D	J. 153	-0.466	0.559	0.932	1.112	0.334	0.485	1.605	0.287	0.121	0.513	0.012	1.713	0.382	0.309
Suz	0.149	-0. 222	0.900	0.335	0.175	-1.531	-0.373	-1.429	-0.040	0.441	1.735	-0.534	1.390	0.027	0.537
US	0.273	-0.067	-0.383	-0.504	-0.402	0.096	-0.292	0.138	-0.134	0.003	0.068	0.082	-0.393	-0.451	-0.130
TOTAL	0.130	0.135	0.733	0.653	1.081	0.711	0.067	0.327	0.130	0.020	0.394	0.135	0.376	0.094	0.342

TABIE D.A (COYT.)

	371	372	381	382	383	384	351	2	4	5	6	7	8	9	502
ALA	-J. 327	$\therefore 639$	0.130	-0.019	0.214	-0.177	0.649	0.251	0.010	0.012	-0.010	0.010	0.013	-0.026	0.030
15A	1.609	1.471	-2.6.5	3.518	0.965	1.041	7.647	0.460	-0.377	0.057	-0.343	-0.098	-0.231	-0.445	0.324
EMD	-3. <52	1.010	-1.792	1.451	-1.ces	0.904	5.280	1.533	-0.219	0.150	-0.086	-0.031	-0.009	-0. 109	0.037
ec	J. $3+1$	0.600	0.552	0.732	C. ≤ 37	0.502	2.214	0.348	-0.152	-0.074	-0.153	-0.024	-0.075	-0.195	0.164
Bis	4. 245	2.741	2.242	3. 6.81	2.499	4.702	5.875	1.975	0.114	-0.282	-0.370	0.190	0.040	-0.575	1.064
Dily	1.074	1.762	0.643	2.175	1.646	0.707	6.726	0.915	-0.430	-0. 110	-0.305	-0.082	-0.181	-0.374	0.389
PR	J.3 3	J.457	0.134	1.329	0.424	0.415	1.037	0.198	-0.176	-0.016	-0.126	-0.049	-0.084	-0.147	0.089
GPE	J. 57	J. 211	0.8 .82	0.841	0.669	0.783	3. 359	0.499	-0.221	-0.126	-0.219	-0.055	-0.106	-0.245	0.222
IEE	J.13s	5.273	3.053	3.235	1. 3 E 9	0.315	3.368	1.064	0.184	0.005	-0.086	0.212	0.195	-0.317	0.648
: T	J.Jey	O. .jतr	0.529	0.271	0.179	0.302	0.802	0.210	-0.146	-0.073	-0.111	-0.034	-0.101	-0.136	0.066
4	1.200	2. 303	0.055	2.057	1. ${ }^{\circ} \mathrm{CB}$	1.621	5.916	1.172	0.183	-0.108	-0.178	0.183	0.165	-0.352	0.514
j6	-J.390	J. 150	0.104	0.172	C.zt 1	-0.010	1.697	0.171	-0.171	-0.029	-0.094	-0.051	-0.078	-0. 105	-0.006
EIM	J.39J	0.850	0.361	0.923	O.C6 3	0.795	1.498	2.3:0	-0.148	-0.053	-0.154	-0.013	-0.089	-0.212	0.122
JPY	-0.033	J. 1at	0.238	-0.359	3.205	0.166	0.561	-0.079	-0.024	-0.021	-0.027	-0.008	-0.015	-0.032	0.014
46	-3. 430	5.632	-0.435	-0.370	C.Cid	0.246	2.103	3. 367	-0.029	0.092	-0.046	0.016	-0.008	-0.110	0.102
108		1.t2 \downarrow	-0.032	0.591	0.451	1.079	3.599	0.787	-0.182	-0.057	-0.192	-0.048	-0.129	-0.235	0.076
SW0	1.3)9	1.176	1.007	1.242	1.300	1.158	3.237	0.486	-0.098	-0.081	-0.144	0.011	-0.050	-0. 196	0. 168
Suz	J. ${ }^{0}$	1.031	1.408	0.547	1. 181	0.389	2.255	0.328	-0.152	-0.071	-0.172	-0.072	-0.099	-0.212	0.222
נS	-3.11/	-0.-20	-0.118	0.038	-0.cc5	0.065	-1.008	-0.059	-0.120	0.026	-0.048	-0.055	-0.068	-0.026	-0.054
rotal	0.305	0.433	0.203	J. 113	0.336	0.350	0.960	0.212	-0.126	-0.029	-0.081	-0.028	-0.063	-0.097	0.058

TABLE 5.5

 TY ISIC SFCTOK IM THE YAJUF ：VJISTHIALIZED COUMTRIES

	1	110	Jil	322	？23	324	331	132	j41	342	354	350	355	368	362
ALA	－1． 174	i． 650	－0．013	0.034	$0 . C C 1$	1）． 000	C． 001	$\bullet .000$	0.030	－0．001	－0．011	0.004	－0．001	－0．001	0.000
ASA	人．85	J．4．3n	－0．046	0.03 i	－）．（cy	-3.101	-1.004	-1.202	0.003	0.000	－0．012	0.000	－0．001	－0．006	0.006
Cus	－1．227	J． 135	J．002	0.010	1．CC2	0.001	0.007	1.001	－0．007	-0.000	－0．015	0.003	－0．003	－0．006	0.001
EC	－15．518	5.077	J．5n4	0.339	2． 147	0.030	0.175	-9.014	J．047	0.020	－0．337	0.021	－0．014	－0．089	0.067
$3 i 4$	－J．+24	3.058	0.210	0.019	O．CE4	－ 0.000	0．Uも 0	-1.002	0.007	0.032	－0．013	0.010	－0．00 1	－0．008	0.005
JEX	－1． 336	3.304	－0． 307	0.103	－C．CCC	0.010	－0．001	－ 9.002	0.035	0.002	－0．007	0.000	－0．0．）0	－0．004	0.002
48	\cdots－． 5	． 70%	0．じっ」	9．051	0．C2F	0.176	C． 220	－0．001	J． 014	－0．000	－0．063	-2.002	－0．079	－0．010	0.013
GF！	－－．	.857	$0.15 t$	0.774	3.042	0.035	0.050	－3． 000	0.022	0.001	－0．116	0.006	－0．011	－0．022	0.016
IXE	－－${ }^{\text {² }}$	$\therefore \cdot 0 \cdot 0$	0.004	0.230	9．CC2	0.000	0.001	3.000	0.031	0.070	－0．002	0.000	-0.050	－0．001	0.001
I I	－1．+18	コ．5．1	－0．033	$0.3+5$	C．C 11	0.014	0.004	－0．008	0.008	0.000	－0．075	0.004	－0．310	－0．026	0.012
－L	－ .150	0.717	0.050	3.312	O． CC	－0．020	0.022	－9． 201	0.010	0.009	－0．017	0.001	0.001	－0．005	0.006
UK	－1．+15	1.011	0．15＇	0.311	3．C5 3	9.736	C． 020	1.000	0.030	C． 006	－0．044	0.002	－0．005	－0．013	0.013
PI	J．924	3.354	－0．023	－0．315	－7．C12	－0．301	－0．042	-3.103	－0．018	0.003	－0．036	0.000	-0.050	－0．002	0.002
J ¢ \＄	－10．312	． 3 ， 8	3． 315	0.172	7． 25.2	3.002	0.119	-0.003	0.040	－0．014	－0．030	－0．013	－0．006	－0．039	0.012
32	0.170	U． 173	－3．021	0.001	－0．CC9	－0．000	－0．004	－0．001	0.031	0.001	－0．003	0.000	0.020	－0．001	0.001
リア』	J．-49	0．c01	－0．011	－2．131	－3．（cc	－3．020	$-\mathrm{C.OO9}$	－0．001	0.001	0.005	－0．006	－0．000	0.000	－0．002	0.002
د ${ }_{\text {D }}$	$-3.2+1$	9． $30{ }^{2}$	－C．0U2	2.104	$3 . C C 1$	0.010	0.306	－7．001	－0．0．04	0.000	－0．009	0.001	－0．002	－0．002	0.000
2 ± 2	－J．J3¢	J． 410	0．C19	U．JJ6	0.14	J． 200	0.309	－0． 201	0.008	0.002	－0．025	0.000	－0．000	－0．003	0.002
」ゝ	＋2．395	－1．159	－0．4t9	－0．352	－3． 15	－0．050	-0.163	-7.120	－0．152	－0．220	－0． 100	－0．001	－0．057	－0．114	－0．050
－utal	7． tc 4	M． 110	J． 556	0.757	0.161	－9．017	0.393	-1.148	－0．031	－0．235	－0．554	0.017	－0．105	－0．265	0.043

	311	172	381	382	3e3	394	381	2	4	5	6	7	8	9	10t
41.4	-0.309	-3.035	-0.003	-0.007	-0.cos	-0.038	-0.013	-.).004	-0.005	0.001	-0.029	-0.012	-0.016	0.001	-0.845
ATA	-0. 328	-0.003	-0.004	-0.024	-0.618	-0.007	-0.018	-0.002	-0.000	-0.009	-0.007	0.015	0.093	-0.033	0.727
CaD	-0.013	-0.011	-0.009	-0.031	-0.c12	-0.032	-0.036	-0.001	-0.002	0.011	-0.004	-0.006	-0.003	0.047	-1.198
EC	-0.729	- J. cos	-0.155	-0.986	-0.517	-0.605	-0. 528	-0.085	-0.028	-0.042	-0.181	0.133	0.074	-0.204	-13. 182
BLI	-Ј.) 3	-3.003	0.002	-0.025	-0.c26	-0.021	-0.013	-0.000	-0.001	-0.026	-0.030	0.033	0.023	-0.075	0.362
DEI	-J.JJ	-0.031	0.001	-0.023	-0.ccs	-0.008	-0.013	-3.000	0.330	-0.007	-0.006	0.016	0.004	-0.040	-0.050
78	- J. 354	-3.038	-0.026	-0.174	-9.081	-0.124	-0.080	-0.016	-0.008	-0.013	-0.077	-0.003	-0.014	-0.056	-4.30 1
GFE	-J. 167	-0.020	-0.070	-0.428	-C.2C4	-0.186	-0.163	-0.031	-0.0u9	0.013	-0.036	0.005	0.024	0.017	-3.429
int	-0.J)1	-0.600	-0.002	-C.002	-0.cc 2	-0.001	-0.004	-3.000	0.001	0.002	0.005	0.004	0.002	0.005	-0.718
IT	- J. 382	-J. 015	-0.035	-0.139	-0.c72	-0.100	-0.094	-3.024	-0.013	0.001	-0.043	-0.014	-0.037	-0.003	-4.071
1.	-J. 315	-0.603	0.003	-0.035	-0.021	-0.020	-0.025	-0.000	0.003	-0.018	0.008	0.053	0.038	-0.064	-0. 161
UR	-3.034	-v. 015	-0.027	-0.191	-0.11 1	-0.14	-0.136	-0.013	-0.002	0.006	-0.002	0.040	0.034	0.014	-0.713
PIV	-0.305	-0.032	0.000	-0.016	-0.007	-0.310	-0. 301	-3.000	0.001	-0.005	0.010	0.023	0.013	-0.031	1.127
JPM	$-0.1 / 2$	-0.027	-0.070	-0.224	-0.220	-0.212	-0.198	-0.046	-0.042	-0.240	-0.925	-0.188	-0.133	-0.573	-18.146
42	- 2.330	-0.001	0.001	-0.001	-0.CC2	-0.002	-C.005	-7.000	0.030	-0.005	-0.003	0.009	0.002	-0.021	0.282
138	-3.308	-0.004	-0.001	-0.007	-0.ccs	-0.014	-0.009	-0.001	0.002	-0.000	0.013	0.024	0.008	-0.013	0.407
SW0	$-3.3<9$	-0.603	-0.011	-0.049	-0.c22	-0.035	-0.015	-0.001	-0.001	0.006	0.001	-0.001	0.001	0.020	-0.369
SW2	-J.3j5	- 0.003	0.001	-0.055	-0.c29	-0.003	-0.050	-0.004	0.030	-0.007	-0.005	0.027	0.016	-0.022	0.280
US	-J. 148	-0. 276	-0.389	-0.523	-0.452	-0.415	-0.370	-0.184	-0.404	-0.925	-6.426	-0.886	-3.109	-8.251	16.414
rOTAL	-3.536	-0.200	-0.6+1	-1.9R2	$-1.2 P R$	-1.342	-1.247	-0.329	-0.478	-1.214	-7.555	-0.862	-3.141	-9.079	-14.502

TABLE D. 6
ABSJLIIF CHJMGES IM ESPLOYTEMT OYDEE TIXED EXCHAYGE RATES
BY ISIC SECTOR TH THE MANO IBDUSTEIALIZED COUMTEIES DIE TO LIAEFALIZAIIOM OP GOVERMEMT PROCUREAEAT IA THE MTV

	1	310	321	322	323	324	331	332	341	342	354	358	355	364	362
4 LA	0.335	-0.023	0.080	-0.012	0.073	-0.035	0.036	0.005	0.030	0.050	0.149	-0.027	0.039	0.034	0.002
ATA	J.JJ2	-0.021	0.065	-0.013	0.C32	-0.058	0.035	0.038	0.170	0.095	0.178	-0.0.39	0.065	0.111	0.002
こ®0	0.331	0.018	-0.347	-0.010	-0.114	0.019	0.359	-0.093	0.984	-0.248	-0.340	-0.093	0.116	0.226	-0.005
EC	1.735	0.276	-1.939	-1.339	-2.3 ± 9	-1.046	-2.736	0.817	-9.543	0.470	0.910	-0.846	-1.019	-0.094	0.289
BLI	J. 079	0.040	-0.212	-0.1F 3	-0.610	0.008	-0.259	0.059	-0.419	-0. 112	-0.336	0.080	0.002	0.018	0.028
DEI	0.178	0.071	-0.167	-0.3t 2	0.014	0.003	-0.130	0.041	-0.343	-0.014	-0.260	-0.021	-0.099	-0.022	-0.002
PR	J.571	0.118	-3.163	-0.355	-0.C91	0.025	-0.637	-0.143	-0.820	-0.119	-0.002	-0.241	-0.049	0.120	0.022
G88	3.)92	0.072	-2.64	-0.944	-1.961	0.098	-0.463	0.287	-1.621	0.127	0.160	-0.263	-1.346	-0.146	0.136
IRE	0.024	-0.023	0.015	-0.004	$0 . C 17$	-0.005	0.006	0.008	0.019	0.028	0.045	-0.005	0.009	0.038	-0.001
17	J. ${ }^{\text {34 }}$	-0.026	0.577	0.140	-0.517	-1.193	-0.555	0.509	-0.522	0.137	0.399	-0.321	0.143	0.432	0.072
W	0.105	0.062	-0.109	-0.079	$0 . C 16$	-0.002	-0.576	-0.147	-0.650	0.024	0.257	0.004	0.049	-0.681	0.008
UK	0.132	-3.037	0.144	-0.214	0.164	-0.028	-0.123	0.104	-0.189	0.397	0.647	-0.078	0.273	0.148	0.025
FIM	U.123	0.045	-0.148	0.125	-n. 116	0.058	0.127	-0.085	0.773	-0.091	-0.681	-0.083	-0.213	-0.137	-0.001
JPY	2.301	0.000	0.765	-0.119	0.109	-0.038	0.435	0.005	0.373	0.170	0.773	-0.485	0.354	0.604	0.090
12	J.) 20	-0.012	0.021	-0.005	0.636	-0.002	0.020	0.002	0.037	0.020	0.031	-0.001	0.011	0.004	0.000
108	$0.1<3$	0.034	-0.384	-0.161	-0.0t 6	0.708	-0.084	-9.075	0.039	-0.200	-0.561	-0.015	-0.167	-0.125	-0.011
SW0	0.470	0.078	-0.648	-0.279	-0.833	0.038	0.176	-0.294	0.970	-0.204	-1.536	-0.190	-0.289	-0.217	-0.005
S42	0.375	0.116	-0.200	-0.175	-0.252	0.100	-0.350	-0.189	-0.630	-0.355	0.020	-0.209	-0.364	-0.462	0.001
05	0.9.9	-0.C11	0.529	-0.109	$0.4 \div 0$	-0.048	0.397	0.096	0.432	0.332	0.628	-0.265	0.172	0.309	-0.039
TOTAL	0.330	J. 520	-2.207	-2.115	-2.569	-1.013	-1.585	0.228	-1.416	0.039	-0.431	-2.223	-1.296	0.254	0.324

TASE 0.6 (rONT.

	311	372	j51	342	323	$3 \mathrm{Hi4}$	34a	$?$	4	5	6	7	8	9	IOt
164	v. $)+2$	v.	U.V06	0.049	3.112	0.139	0.198	0.349	0.027	-0.070	0.021	0.062	0.061	-0.093	1.366
4IA	v.145	J.isto	0.216	$0.3<1$	0.409	0.152	0.221	J.021	J. 031	-0.063	0.060	0.092	0.065	-0.058	2.411
CsD	-J.ats	-J. 502	0.017	-0.e +3	0.125	0.388	-4.147	-3. 394	0.014	0.097	0.069	-0.010	-0.117	0.796	-4.245
2 C	-3.130	-2.412	1. 304	0.371	7.150	6.542	7.560	-3.226	0.457	1.483	3.370	0.681	2.300	3.404	23.186
02.1	-1. 145	v. 229	-0.115	-3.394	-0.344	-0.227	0.103	-3.073	-0.008	0.160	0.225	-0.036	0.039	0. 394	-2.510
DEV	-J. 250	-3.042	$-3.1 \div 2$	-0.354	-0.45s	-1.037	-0.252	-3.014	-0.010	0.097	0.030	-0.105	-0.075	0.284	-2.927
Fi	-0.j07	-3.46	J. jut	0.505	C. 7CC	0.476	1.341	-0.206	0.037	0.330	0.669	0.069	0.323	0.812	2.963
cif	U. 520	-1.080	0.724	2.553	5.112	4.104	2.668	-1.280	0.120	0.627	1. 170	0.262	0.820	1.470	9.990
LEE	-. 110	3. 022	0.031	0.332	0. 666	0.037	0.361	0.302	0.011	-0.021	0.016	0.021	0.012	-0.020	0.436
IT	J.53\%	-1.453	$0.51 t$	2.345	1.c7s	1.597	1.602	-1.386	J. 1+3	0.163	0.465	0.179	0.505	0.171	6.071
-	Ј.JJ9	-J. ᄂJ6	-0.1yd	-0.117	0.176	9.349	0.220	-3. 106	-0.023	0.123	0.103	-0.091	0.050	0.218	-1.150
JK	0.327	-0.116	0.609	2.106	$0 . \operatorname{ces}$	1.243	2.116	-3.262	0.184	0.004	0.691	0.382	0.626	0.076	10.314
PIM	-0.252	-0.030	-0.184	-0.341	-c.esc	-0.928	-0.577	-3.153	-0.010	0.167	0.051	-0.093	-0.121	0.387	-3.570
JPE	1.449	0.725	1.173	0.120	$3.6 C 9$	3.658	0.779	-0.094	J. 315	0.247	3.311	1.476	1.070	1.482	24.257
12	J.J03	0.004	0.019	0.316	0.024	0.037	0.058	0.004	0.008	-0.012	0.014	0.026	0.020	-0.021	0.383
nog	-3. 228	J.642	-0.405	-0.390	-C.7¢7	-1.278	-0.647	-0.069	-0.053	0.145	-0. 108	-0.269	-0.136	0.322	-6.078
SHD	-u. 392	-0.117	-0.423	-1.528	-1.E52	-1.171	-1.511	-0.561	0.033	0.397	0.116	-0.212	-0.243	1. 102	-8.743
SHZ	-3.561	-0.129	-0.819	-6.872	-0.cc. 8	-2.752	0.169	-2.113	-0.029	0.422	-0.022	-0.515	-0.439	0.830	-17.132
US	J. 328	0.005	0.453	2.465	-3.298	0.288	-3.677	-0.443	0.112	0.073	0.855	0.173	0.380	0.950	2.574
rotal	0.154	-2.812	1.322	-1.59'	3.724	4.923	-1.575	-6.980	$0.8 i 5$	2.836	7.737	1.411	2.789	8.700	14.408

TABLE 0.7
CHAACES IM EXPORTS OMDER FIXED EXCHAYCE RATES BY ISIC SECTOQ IM THE JAJOB INDUSTRIALIZED COUUTRIE DIE IC THE COFRINED EEEECTS OF REDOCTJOMS IM TARIFFS

	1	310	321	322	323	324	331	332	341	342	35A	358
did	5.1	5.4	-3.9	0.1	14.4	0.2	1.1	0.1	0.1	0.4	11.4	-13.0
i [1	0.4	13.7	29.4	18.6	2.4	9.7	12.9	3.9	23.7	2.4	20.1	7.6
cyo	10.4	12.0	2.4	12. 2	A. 6	8.3	38.2	0.2	147.4	3.0	25.0	80.8
玉こ	47.0	533.4	636.5	≤ 13.7	124.8	46.5	37.7	160.8	171.6	79.3	1211.9	221.0
3L Y	4.8	73.9	153.0	81.8	12.7	2.6	6.3	27.7	41.5	8.5	197.6	1.2
OEx	3.0	50.2	15.9	23.6	12. 1	2. 8	2.6	12.4	6.2	2.2	24.5	12.8
FF	10.9	65.1	74.1	82.0	19.3	9.3	7.2	11.9	22.0	13.5	159.5	34.2
GFE	4.9	106.5	193.4	120.2	31.2	13.0	13.3	55.5	46.7	21.9	385.4	52. 3
IFE	1.0	17.4	12.2	11.8	3.5	1.4	0.4	0.8	1.9	1.2	10.6	0.4
I 1	5.3	33.9	33.6	75.6	14.5	9.7	2.4	28.7	5.9	7.3	70.6	37.5
NL	14.5	140.4	124.1	82.2	15.0	6.0	3.7	14. 1	35.8	8.6	226.6	50.2
JK	1.9	46.0	40.2	36.6	16.5	1.8	1.8	9.8	11.7	16.2	137.1	32.4
PIM	0.2	11.3	2.3	17.0	11.1	4.9	7.5	3.3	40.8	1.1	6.4	6.7
JPN	1.8	0.3	-13.4	2.7	1.3	-3.2	1.2	2. 1	0.9	1.9	55.2	0.7
$N 2$	0.4	5.7	11.3	1.0	1.5	-0.0	0.6	0.3	1.6	0.1	0.5	0.0
NUE	1.3	11.6	5.4	3.9	2.8	0.4	1.4	2.7	14.6	0.4	13.9	31.2
Sdo	0.7	1.8	4.7	5.3	4.5	1.1	11.4	11.0	54.8	2.2	24.2	29.5
312	0.3	12.4	16.7	14.7	1.5	2. 1	2.6	3.4	6.5	5.0	67.5	25.8
13	343.4	-11.5	1.0	16.5	13.2	-0.4	26.8	10.9	20.1	18.9	181.4	47.1
IJTAL	410.9	596.0	687.4	605.8	186.1	69.6	141.5	198.7	482.1	114.7	1617.5	437.4

TABLE D. 7 (CONT.)

	355	36 A	$3 \in 2$	371	372	391	382	383	384	381	TOT
Ala	0.4	2.2	C. 1	-0.6	41.0	2.9	1.5	1.8	2.4	13.8	87.0
AIA	9.8	10.3	2.3	27.1	6.0	24.8	53.1	31. 1	17.3	61.4	387.9
20	16.9	28.8	2.4	11.7	57.3	19.5	80.3	40.1	159.3	247.2	1012.0
EZ	244.2	153.8	5C.4	387.5	115.7	511.0	977.9	653.1	1150.4	1219.9	9248.1
BLX	31.1	16.4	12.7	150.8	30.3	55.4	83.2	68.6	179.9	160.7	1400.7
DEN	2.9	5.4	1.0	5.1	3.2	13.8	47.7	19.9	11.3	52.7	331.9
FR	60.4	20.5	10.1	71.4	15.9	79.9	167.2	104. 1	249.2	162.4	1450.2
GFR	63.2	46.4	12.3	96.2	29.5	181.4	399.6	247.7	429.4	323.4	2863.4
IRE	3.2	2.8	C. 5	0.4	2.5	5.2	6.9	5.6	2.2	14.2	106.1
:2	24.5	29.9	4.5	16.7	4.9	71.4	84.0	47.2	78.4	92.8	779.1
hL	24.4	13.4	4.7	32.9	21.1	40.3	71.1	79. 1	71.0	234.5	1318.5
UK	29.6	19.0	4.5	13.9	8.2	63.5	118.1	80.8	129.0	179.2	998.1
EIN	0.6	1.2	0.7	6.1	5.0	9.3	21.2	11.6	26.5	12.8	206.6
Jes	24.9	15.7	1.3	-11.5	-0.5	63.8	47.4	182.9	269.7	168.7	809.4
N2	0.1	0.1	C. 1	0.2	R. 9	1.0	1.8	0.5	0.5	6.9	43.1
nJit	1.3	3.4	C. 3	15.1	24.3	9.9	16.1	10.7	39.0	18.5	228.2
Sid	6.3	4.3	1.6	43.9	18.2	34.6	09.5	65.4	140.3	52.8	608.5
3 a	2.3	3.2	C. ${ }^{\text {P }}$	5.5	9.8	26.1	91.6	39.7	7.7	126.5	471.6
03	25.9	24.3	6.7	7.3	10.5	36.9	206.2	211.1	324.0	338.2	1908.6
IJIAL	333.2	247.3	67.2	492.2	296.2	788.7	1506.5	1248.0	2137.2	2266.7	15011.0

TABLE D． 8

CHANCES IM ImPORTS TEDER PIXED EECHAXGE RATES BY ISIC SECTO日 IM THE GAJOR INDISTRIALIZED COUMTRIES D！Je TO IEE COMBINED PRPECTS OP REDUCTIOYS I』 TABIPFS AND NTES IN T：IE HTY

	1	310	321	322	323	324	331	332	341	342	351	358
ALA	8.1	4.7	0.9	－0．3	0.9	－0． 5	2.5	9.1	0.0	－2．0	－1．7	0.0
Ara	5.1	－0．9	22.5	－0．7	4.5	0.7	1． 1	－1． 1	7.6	0.1	35.9	9.7
cov	10.9	9.5	21.1	8.8	9.3	5.2	16.8	20.9	41．1	56.5	10.3	64.5
E：	395.3	440.0	483.9	189．8	141.0	－3． 9	90.1	137.0	363.7	49.0	1311.6	139.1
BLX	39.5	40.3	94.6	42.0	7.5	－0．1	9.7	15.7	35.4	5.8	114.9	22.7
JEN	15.6	14.5	22.6	10.1	11.2	-0.3	4.5	5.7	15.5	2.6	39.0	5.0
ER	＋7． 5	59.3	67.9	67.8	18.3	0.7	18.6	39.3	68.2	14.9	250．9	2.2
GER	127.3	38.3	123.0	144.9	66.9	－3．9	23.6	37.5	107.6	12.1	365.8	29.9
IRE	4． 1	7.2	11.3	7.1	1.3	－0．2	0.5	0.9	3.3	0.1	14.4	－0．0
IT	58.0	53.9	$+0.5$	17.1	15.2	0.1	9.3	3.6	27.1	2.4	185.5	36.2
日L	56.5	56.0	84.4	55.4	10.1	－0．1	11.2	20.9	53.8	5.6	142.8	33.7
UR	46.8	120.5	39.3	45.5	10.5	－0．1	12.7	13.4	52.9	5.7	198.4	9.5
PIN	3.5	0.8	9.9	2.9	6.1	-0.0	2.6	3.2	5.0	2.1	22.2	12.9
JPM	35.4	0.3	2.9	0.7	0.2	1.7	-4.3	6.7	1.7	0.0	62.7	34． 7
： 2	1.0	0.2	3.1	－0．0	0.0	0.4	0.1	0.0	0.2	－0．7	8.2	－0．2
8）8	－0．4	0.5	9.7	5.1	4.2	0.2	2.1	7.2	7.8	2.0	27.1	35.4
3d0	－2．9	－1．0	12.6	5.2	9.1	0.0	4.9	12.8	14.7	4.8	64.4	55.1
3WZ	2.3	0.0	12.4	26.9	4.0	8.3	4.6	17.9	21.1	7.0	32.2	48.1
US	－2．9	101.9	37.7	176.7	13.5	2.0	57.0	0.0	18.3	－0．1	92.1	32.6
rotal	455.2	556.1	616.4	t15．2	193.0	14.2	177.6	213.8	481.2	118.8	1665.2	432.0

TABIE D. 8 (COMT.)

	355	361	362	371	372	381	382	383	384	381	205
Ald	16.2	-1.1	-C. 3	0.2	0.8	-2.4	2.6	-7. 2	9.4	-0.9	38.8
ATA	14.8	9.9	2.9	?. 3	4.5	67.6	38.4	31.5	19.6	25.5	300. 8
Csid	78.0	18.6	7.5	11.8	10.3	137.2	119.9	179.7	94.4	185.4	1117.8
E:	189.7	145.4	41.6	362.7	211.4	391.6	776.4	438.0	1007.7	667.9	8169.2
BLX	13.6	12.0	3.3	36.9	37.9	35.5	86.5	3.0	152.3	62.2	921.1
DEN	5.7	5.3	1.2	11.9	4.1	14.6	31.8	27.2	33.9	26.1	307.8
FR	36.9	31.2	c. 0	74.1	27.9	83.7	150.5	92.5	290.3	140.8	1592.3
SiR	84.4	56.8	13.0	125.5	81.8	114.3	259.6	100.6	258.3	201.9	2419. 1
IRE	1.4	0.9	0.5	2.7	0.9	1.9	5.7	4.0	2.9	11.5	82.9
I I	13.6	6.0	4.5	46.9	24.1	36.7	51.0	35.3	34.2	69.3	770.5
AL	15.6	25.7	4.5	27.3	15.5	51.8	75.9	61.2	50.6	60.5	918.9
UK	12.6	7.5	5.5	37.6	19.3	53.2	115.2	64.2	185.1	95.5	1156.6
PIS	3.0	3.4	C. 5	8.5	1.9	11.5	10.9	38.3	61.:	32.6	272.8
JPN	1.7	-2.8	2.2	3.1	-3.0	14.6	113.2	60.8	182.0	109.8	624.5
± 2	-0.9	0.5	C. 3	0.6	2.4	5.0	13.1	1.3	-0.2	2.6	36.9
NJa	2.9	4.4	C. 6	10.2	8.7	20.3	61.7	34.0	78.2	26.8	348.9
is 3	7.6	7.3	1.4	38.0	16.9	23.0	111.6	104.9	198.8	67.0	756.3
Sid 2	0.7	8.6	C. 5	11.6	6.3	13.5	80.9	36.0	106.9	35.8	491.5
J	57.4	79.6	12.6	30.1	22.0	132.7	219.4	414.5	386.7	1294.0	3177.9
TJIAL	377.1	273.7	69.9	478.2	282.3	814.5	1578.1	1331.8	2144.7	2446.5	15335.4

TABLE 0.9
AESOLUTE CFINGES IM ESPLOYYEMT UVDER PIXED EXCHAYGE RATES ET ISIC SECTOR IM THP HAJOR I XDISSTAIALIZED COUMTEIES JUE TO IFF COASINED EPPRCTS OP REDUCIIOMS I⿴ TARIPFS

	1	310	321	322	32：	324	331	332	341	342	354	358	355	364	362
Ai．${ }^{\text {a }}$	U．394	．． 110	－0．170	0.054	9．：¢？	0.113	－0．091	－7．217	0.032	0.098	0.281	－0．115	－0．533	0.112	0.018
ata	1． 5 5y	0.375	3.006	2．000	0．8：？	0.711	0.396	0.321	0.980	0.175	0.230	－0．021	－0．031	0.123	0.066
こッ0	1．540	0.357	－0．730	0.005	0.160	0.360	1． 265	－7．508	2.847	－1．878	－0．006	0.136	－1．219	0.396	－0．165
$2 C$	－7．35t	17.417	37.370	23.001	1.174	2.550	－1．719	4.755	－3．091	2.187	14.201	－0．202	4.656	2.500	2.940
blx	1．418	2.118	9．431	5.219	C．4EC	0.199	0.532	0.272	1.243	0.229	6.225	－0．185	0.583	0.377	1.303
D¢】	2．405	1.300	1.125	1.509	0.211	$0.1 ¢ 3$	－0．022	0.704	$-0.2+3$	0.035	0.171	0.021	－0．054	0.024	0.051
Pa	1．215	1． 4.45	4.204	2.935	C． 567	0.756	－0．805	－7．594	-1.083	0.001	－0．112	0.110	1.566	－0．232	0.260
$\checkmark \mathrm{Pa}$	－0．317	$4.40 y$	8.471	2.192	－1．c27	0.823	－0．075	1.606	－1．033	0.635	8.192	－0．108	0.142	－0．161	0.775
Lixe	2． 222	U． 54	J．Yys	U． 354	0.109	0.079	0.017	0.021	0.041	0.032	0.218	0.007	0.071	0.160	0.037
IT	-3.140	1．423	6.045	7.136	$0 . C \in 3$	－0．003	－0．332	2.526	－0．687	0.297	－3．401	－0．191	1.069	2.069	0.246
－i	3． 231	2． 541	4.970	2． 593	c． 274	0.229	－0．4j8	0.133	－0．029	0.230	3.416	0.079	0.536	－0．435	0.181
UK	－．．3J9	2.107	2.049	0.812	0.459	0.275	－0．595	0.087	-1.300	0.679	－0．509	0.065	0.744	0.698	0.088
P15	1.350	0.320	0.204	1.241	O．CEs	0.330	0.367	0.369	1．199	－0．072	－0．632	－0．073	－0．176	－0．138	0.040
J』\％	－11．145	1． 003	－1．544	0.186	－0．1tt	－0．196	0.977	－0．088	0.435	0.190	0.790	－0．665	0.974	1.574	0.178
12	J． 611	0.140	0.431	0.126	0.049	－0．016	0.361	0.016	0.057	0.041	－0．103	0.001	0.066	－0．004	－0．004
Yua	J．377	0.108	-0.144	0.366	－0．633	0.022	－0．0：1	－0．104	J． 184	－0．178	－0．408	0.002	－0．110	－0．047	－0．029
240	i．st9	-3.0 ± 0	－0．451	－0．051	－3．174	0.052	0.528	0.023	1.163	－0．144	－1． 309	－0．189	－0．013	－0．092	0.017
Su2	0.127	U． 307	0.390	－0． $3+9$	－0．244	－9．075	－0．430	－0．373	－0．682	－0．114	1． 1.56	－0．215	－0．279	－0．460	0.026
us	1．190	－2．34 1	－4．434	－6．330	－0．629	0.069	－1．316	0.530	－0．610	0.149	1.269	－0．122	－0．911	－1．785	－0．319
PJTAL	＋1． 204	10.003	33.954	20． 908	1.450	3.921	－0．024	4.523	2.513	0.454	15.869	-1.463	2.394	2.180	2.767

	111	372	361	392	3F？	354	3 ± 1	2	\downarrow	5	6	7	8	9	Tor
Ala	J． 354	0.577	0.258	0.371	0． 2 ¢	－0．074	$2 . j 01$	1.241	J． 031	－0．011	－0．135	0.093	0.105	－0．428	2.257
4「	1． $3+6$	0.234	－2．165	2.076	1．2：？	0.521	2.979	J． 125	-2.094	0.071	－1．605	－0．085	－0．245	－2．69 3	12.700
こロ	－J．231	－0．0．14	－2．707	0.710	－1．344	1.745	0.321	0.529	－3．234	1.071	－1．363	－0．239	－0．163	－2．742	－1．865
Eし	y． 0.09	－3． 120	13.911	13.024	24．6CE	22．0．83	42.717	1.106	－1．264	－4．644	－21．129	－0．657	－2．194	－40．95 1	174.515
BLicisin	5． 709	0.000	2.505	2.019	2.124	3.317	2.230	0.674	J．033	－0．765	－2．455	0.526	0.159	－5．289	38.997
DEX	－）．132	2．c1o	0． 164	1．46）	0．1tc	－0．721	1.711	2.304	－0．075	－0． 120	－1．052	－0．226	－0．340	－2．563	6.342
7R	J． 312	J．029	U．950	5.291	2.158	3.239	4.190	3.113	－0．291	0.014	－3．828	－0．516	－0．74 3	－6．145	17.142
iF\％	3．745	－0．104	0.1 .6	13.336	12．c18	10.504	17.642	1．535	－0．398	－1．792	－6．663	－0．550	－0．597	－11．596	61.132
IfE	小．」j7	ग．1vo	0．318	0.1 .55	C．żs	0.079	0.538	0.109	0.038	－0．015	－0．124	0.160	0.068	－0．690	6.334
IT	0.743	－1．abt	2.452	3．312	2．CE？	3.531	4.173	－）． 727	-3.231	－1．121	－2．503	－0． 209	－0．909	－3．115	14.462
UL	3.615	－． $3+4$	3.449	1.575	1． 3.36	1.635	3.686	）．087	0.066	－0．367	－1．337	0.529	0.590	－4． 377	22.013
JX	－u．juv	コ．しこ2	1.177	3．43）	2．752	1.010	E．6．6 3	1．311	－0．405	－0．475	－3． 168	－0．372	－0．433	－7．177	8.098
PIM	－2．2」1	Ј．しぐ	-0.166	－0．247	－0．5 5	－0．525	-0.348	－0．125	－0．050	0.078	－0．431	－0．091	－0．211	－0．721	0.174
JPM	J． 787	0． 909	4.150	－0．931	7.751	5.474	5.491	－3． 282	0.192	－1．006	－0．773	1.013	0.682	－2．529	13.526
\＃ 2	－J． 311	0.193	-0.101	－0． 229	0．Cこ\％	0.192	0.295	3． 322	0.003	0.068	－0．077	0.053	0.016	－0．339	1.896
108	－J．J2E	0.086	-0.430	－0．705	－C．tE6	－0．675	－c．091	）． 316	－0．086	0.060	－0．662	－0．323	－0．283	－0．839	－4．307
540	J．ju3	0.003	0.615	0.397	－0．617	0.520	－0．413	-3.461	－0．030	0.165	－0．734	－0．181	－0．364	－1．384	－2．258
5d2	－0．303	0.645	0.266	－t． 211	0.295	－2．704	2.733	-1.222	－0．120	0.277	－0．615	－0．669	－0．696	－0．629	－10．598
3 S	－ 3.733	－0．021	-1.736	2.366	-3.644	1.040	－17．023	－1．389	－1．178	0.080	－15．597	－2．699	－7．948	－14．666	－28．133
rotal	1J． 341	1.620	11.781	29．－6J	26.77	28.089	36． 923	－1．940	－2．830	－3．790	－43． 123	－3．785	－11．302	－67．921	157．906

TABLE D. 10
 3Y ISIC SFCTO? IM THE HAJOP IMDISTRIALIZED CUUNTPIES DIE TC IHf COnermfo efpects op eeductions ill tarifis

AMD NIBS II THE GTM

	1	310	321	322	323	324	331	332	341	342	351	358	355	364	362
464	U. 105	J. 152	-0.280	0.088	6.: 54	1.004	-0.169	-0.807	0.105	0.133	0.483	-1.912	-2.802	0.253	0.216
474	3. 309	0.449	4.020	4.430	4.103	3.611	3.570	1.072	3.096	0.630	0.434	-0.353	-0.24 3	0.280	0.530
CMD	J. 232	0.135	-0.651	0.519	1. $6 \subseteq 0$	1.788	1.038	-0.919	1.964	-1.831	-0.007	0.680	-4.226	0.846	-1. 160
EC	-3.357	0.621	1.779	1.623	C. 59	0.636	-0.254	J.8R9	-0.407	0.200	0.647	-0.073	$0.94 *$	0.220	0.766
BLE	1.Jל4	1.972	8.831	9.184	7.2こ0	1.669	2.097	1.792	4.008	0.518	7.227	-1.389	7.141	0.693	4.079
JEM	1.105	1.455	4.568	7.119	9. 585	5.468	-0.145	3.511	-1.309	0.094	0.587	0.641	-1.235	0.085	1.341
PI	0.371	0.315	1.171	1.095	1.223	0.926	-0.469	-0.577	-0.865	0.000	-0.028	0.078	1.764	-0.118	0.350
GPR	-J. 397	0.835	2.060	0.661	-2.zも	1.276	-0.038	1.368	-0.526	0.292	1.210	-0.300	0.107	-0.057	0.752
IRE	J. 914	1.021	4.741	4.928	4.926	2.154	0.429	0.511	0.692	0.774	2.175	0.371	3.396	1. 772	1.087
$1 T$	-0.238	0.341	1.134	1.982	0.128	-0.002	-0.332	1.864	-0.521	0.195	-0.707	-0.567	0.895	0.666	0.269
VL	1.112	1.637	9.002	8.295	9.464	4.045	-1.203	0.680	-0.099	0.296	4.519	0.790	2.916	-1.372	1.793
0x	-0.426	0.271	0.393	0.240	1.187	0.324	-0.467	0.072	-0.573	0.203	-0.116	0.173	0.625	0.316	0.133
PIM	J. 457	0.447	0.741	3.561	1.cs 8	5.439	0.947	0.658	2.158	-0.216	-2.573	-2.256	-2.602	-0.713	0.897
JPM	-3.173	0.006	-0.130	0.032	-0.312	-0.495	0.154	-0.040	0.111	0.032	0.133	-1.218	0.630	0.296	0.207
42	0.571	0.200	2.149	0.622	1. 538	-0.267	0.343	0.258	0.543	0.216	-0.724	0.164	1.146	-0.048	20.175
H08	U.j<2	0.321	-1.024	0.578	-2.193	1.055	-0.248	-1.014	0.687	-0.429	-1.978	0.076	-3.107	-0.33 1	-1.162
iHD	U. 145	-0. 102	-1.723	-0.189	-5.461	1.256	0.741	0.114	1.698	-0.289	-2.833	-5.994	-0.079	-0.279	0.249
S42	0.299	0.524	0.617	-0.154	-7.273	-0.655	-1.808	-2.899	-3.045	-0.211	1.729	-17.948	-4.525	-2.265	0.615
05	1.577	-0.134	-0.377	-0.544	-0.031	0.039	-0.248	0.132	-0.092	0.014	0.117	-0.069	-0.349	-0.907	-0.180
20TAL	0.179	0.259	0.659	0.595		0.563	-0.001	9.333	0.114	0.014	0.371	-0.266	0.237	0.093	0.394

TABLED. 10 (COMT.)

	371	372	381	392	3P?	384	334	2	4	5	6	7	8	9	109
4LA	0.075	2. 145	0.187	0.054	0.345	-0.051	0.969	3. 308	0.036	-0.002	-0.010	0.021	0.023	-0.034	0.039
4TA	1.398	1.634	-2.423	4.372	1.414	1.441	P. 206	3. 542	-0.285	0.028	-0.332	-0.043	-0.181	-0.460	0.431
:80	$-0.3>7$	-0.061	-1.787	0.630	-0. ¢ ¢ 2	0.934	0.026	0.362	-0.209	0. 167	-0.082	-0.033	-0.032	-0.084	-0.019
EC	0.515	$-0.0<2$	0.036	0.929	0.741	0.679	2.650	0.087	-0. 114	-0. 356	-0.133	-0.011	-0.036	-0.181	0.174
B18	3.440	2.582	2.113	3.056	2.129	4.375	6. 124	1.781	0.091	-0.240	-0.343	0.189	0.066	-0.542	1.009
DEX	-1.	0.506	J.401	2.348	C. 440	-1.571	5.824	0.215	-0.498	-0.063	-0.298	-0.136	-0.228	-0.34 1	0.265
FE	v. 897	$0.0 \downarrow 6$	0.100	1.104	C. 53	0.466	1.346	0.067	-0.160	0.001	-0. 109	-0.044	-0.059	-0.130	0.082
672	J. 016	-3.103	0.448	1.030	1.679	1.242	3.915	0.145	-0.173	-0.093	-0.187	-0.037	-0.03	-0.217	0.249
IRE	0.3+8	5.341	4.329	3. 347	1.613	0.580	4.328	1.086	0.268	-0.020	-0.073	0.251	0.243	-0.324	0.620
IT	J. 176	-1. 30 is	0.057	0.612	0.347	0.523	1.273	-0.223	-0.094	-0.064	-0.095	-0.019	-0.066	-0.129	0.076
1 L	1.158	2.243	J. 369	1.633	1.479	2.029	6. 247	1.090	0.147	-0.084	-0.164	0.171	0.194	-0.340	0.885
OK	-0. 223	0.050	0.204	0.394	O.jel	0.112	2.201	3.091	-0.11d	-0.029	-0.077	-0.024	-0.031	-0.104	0.033
P!	-1.159	0. $1+7$	-0. 540	-0. 373	$-2 . E \leq 0$	-1.337	-2. 204	-1.392	-0.179	0.049	-0.135	-0.056	-0. 182	-0.142	0.008
JE【	0.121	J.523	J.4.Jt	-0.05	0.520	0.449	0.627	-3. 157	0.058	-0.020	-0.007	0.030	0.039	-0.024	0.026
$\triangle 2$	$-0.3+6$	5.934	-0.405	-0.248	0.15 C	0.420	2. 565	0.439	0.022	0.073	-0.040	0.047	0.020	-0.125	0.157
30\%	-0.1,9	2.349	-1.692	-2.178	$-2 .+76$	-1.179	-0.580	0.145	-0.453	0.041	-0.224	-0.201	-0.345	-0. 172	-0.241
j U $^{\text {j }}$	J. 756	U. 426	0.550	0.250	-0.639	0.349	-1.200	-2.194	-0.092	0.056	-0.124	-0.066	-0.15 1	-0. 108	-0.055
SW2	-4.750	O.4.43	0.365	-4.741	0.2E1	-20.451	2. 358	-3.229	-3. 198	0.141	-0.180	-0.266	-0.252	-0.129	-0.376
JS	- J. 314	-0.233	-0.113	0.041	-C. IC $^{\text {c }}$	0.058	-1.323	-0.139	-0.160	0.002	-0.075	-0.075	-0. 103	-0.052	-0.032
POTAL	J. 286	U. 151	0.216	0.35%	0.27 C	0.432	0.891	-6.071	-0. 110	-0.020	-0.081	-0.024	-0.065	-0.098	0.058

APPENDIX E

Flexible Exchange-Rate Results

The results reported in these tables refer to different runs of the
model as noted, under conditions of flexible exchange rates.

The results in Tables E. 1 - E. 4 and E. 9 - E. 12 are in terms of percentage changes. The trade results in Tables E.5, E.6, E.13, and E. 14 are in millions of dollars. The employment results in Tables E. 7 and E. 8 in thousands of man-years.

さかbLと 5．

	i	11；	$こ ゙$	3.2	，23	324	3）1	3j	341	342	35A	358
－－i	$\ldots 3$	$\because i_{2}$	－－． 01	－3．175	－－． 14	－0．25	Ј．Jく	0.30	-0.14	0.18	0.27	－0．07
\therefore ：is	－．＇；	－．13	－－． 27	－3．12	－ 2.11	－9．31	－J． 06	0.28	-0.21	0.10	0.19	－0．14
\cdots	． 7 ，	$\cdots{ }^{\text {－}}$	－1．12	1.93	－1．00	－ 2.1 ；	0.07	J．43	$-.0 .06$	0.25	0.35	0.01
－－	－＇	－ 1.10	－7．10	－2． 21	－ 217	－ 2.25	J．${ }^{\text {c }} 2$	0.31	－0．13	0.16	0.26	－0．09
－	3.17	－0．6＂	－1．87	-9.59	-7.77	-7.42	-3.62	－0．27	－0．77	－0．46	-0.36	－0．70
$\sim \sim$	．．．）	－1．${ }^{\text {a }}$ 。	－ 0.6	$-6.2{ }^{5}$	-7.34	-0.45	-0.19	U． 16	-0.34	－0．0．3	0.07	－0．27
1.	1.31	1．）	－1．12	3.33	－3．06	－0．17	U．U．	J．43	-0.06	0.25	0.34	0.01
\cdots	之．．	-1.1	－？．？）	-1.15	－n． 24	－0．36．	－3．09	J． 25	－0．24	0.07	0.16	－0．17
A．	\cdots ．${ }^{\text {r }}$	-1.17	－1．is	-0.19	－0． 2 P	－0．4）	-0.13	$0 .<1$	-0.28	0.03	0.12	－0．22
\therefore	$\therefore .7$	$\therefore .14$	－1．13	J． 22	-1.07	-1.14	J．J8	0.42	－0．37	0.24	0.33	－0．01
\because	． 1	$-\therefore \cdot 0$	-1.57	-1.42	－n． 51	－0．63	-0.36	－0．01	－0．51	－0．20	-0.10	－0．44
U	」． 7	0.14	－1．23	心． 12	0.03	－9．03	0.13	0.52	0.33	0.34	0.44	0.10
\therefore ：	： 7 7，	3.13	-9.15	3． 10	－0．79	－0．23	0.06	0.41	－0．09	0.22	0.32	－0．02
J：：	：．,	－J．ji	－1．17	－0．04	－．）． 13	－3．75	3.32	J． 16	－0．13	0.19	0.27	－0．06
－	J． 4	J． 10	－ 7.18	$\bigcirc \therefore 7$	－0．02	－ 9.11	J． 13	0.48	-0.02	0.29	0.39	0.05
$\therefore j$	こ．3）	3． 27	－ 1.1 .1	1． 15	－3．04	－0．15	J． 11	0.46	-0.34	0.27	0.37	0.03
3n：	1．02	－3． 11	－1．2？	－．）． 1 ？	－3．${ }^{2}$	－9．34	－0．07	0.27	－0．22	0.09	0.18	－0．15
jaj	J．， 2	－J． 21	－7． 32	－1．23	-7.32	－0．44	－0． 17	0.17	－0． 32	－0．01	0.09	－0．25
13	1．95	J． 2 j	－ 0	0.21	0.12	－0．05	0.27	0.01	0.12	0.43	0.52	0.19
． $3: A L$	3.74	0.07	－1．11	0.76	－0．06	－0．16	0.10	0.42	－0．02	0.30	0.37	0.04

TARIE E. 1 (CONT.)

	355	30. ${ }^{\text {a }}$	362	371	372	39.1	382	383	384	381	T0T
AL:	0.19	J.43	1.25	-3.06	-0.10	0.43	-0.10	0.23	0.09	0.08	0.18
dis	3.11	19.15	D. 12	-0.14	-0.18	0.33	-0. 18	0.15	0.01	0.01	0.07
-..6)	J.26	J. 10	1. ${ }^{\prime}$	2.01	-0.03	0.42	-0.02	0.30	0.17	0.16	0.23
E:	1.15	J. 21	0.24	-10.68	-0. 10	0.37	-0.11	0.20	0.09	0.07	0.12
ULA	$-3 .+6$	-.).di	- 0.30	-0.69	-0.73	-0.23	-0.73	-0.40	-0.54	-0.55	-0.50
JES	-:0. 11	J.J3	0.05	-0.26	-0. 30	0.23	-0. 30	0.03	-0.11	-0.12	-0.02
1 :	J. - 0	0.36	1.23	0.01	-0.03	0.49	-0.03	0.30	0.16	0.15	0.22
U5i	J. 63	0.1:	2.15	-0.17	-0.21	0.37	-0.20	0.12	-0.01	-0.02	-0.00
I!	1.0t	J.jA	1. 11	-0. 21	-3. 2^{5}	0.25	-0.25	0.08	-0.06	-0.06	-0.05
I.	1.as	U. 2 ?	2.37	2.00	-0.04	0.47	-0.04	0.29	0.15	0.15	0.24
.i	-3.1,	-j.13	-3.12	-7.43	-3.47	0.03	-0.47	-0.14	-0.28	-0.29	-0.25
\because	-.35	0.34	1.4?	0.10	0.06	0.57	0.07	0.39	0.26	0.25	0.27
11:	7. 24	J. 25	0.33	-0.01	-0.05	0.45	-0.05	0.28	0.14	0.13	0.24
\because	$\therefore 1$,	3.23	0.26	-C. 36	- 0.10	0.41	-0.10	0.23	0.09	0.09	0.14
\because	1.3.)	- 34	3. 37	0.36	0.02	0.52	0.02	0.35	0.21	0.20	0.29
$\because:$	9.ct	0.32	0.35	1.34	- 7.00	C.5)	-0.00	0.33	0.19	0.18	0.28
ja.	j.1)). 14	3.17	-3.15	-0.19	0.32	-0.13	0.14	0.01	-0.00	0.06
"	3. 3	3.3.	2. 37	-0. 25	-3.20	n. 2?	-3.28	0.04	-0.00	-0.10	-0.07
\therefore	'.t.	J. 10	0. 51	0.13	3.15	0.66	0.15	0.40	0.34	0.34	0.37
20in	1.- ${ }^{1}$	0.2'). 34	0.73	n.01	0.53	0.00	0.31	0.20	0.18	0.23

TARLEE. 2

	1	11	321	122	323	324	311	332	341	342	351	358
Ain	-1.44	-1.45	-9.4 ?	- \because - 07	-4.4?	-0.25	-0.45	-5. 33	-0.14	0.18	-0.11	-0.06
dsa	--.,	-1. 3	-2.11	-7. 20	-1.50	-0.89	-1.11	-0.45	-3.32	-0.78	-2.73	-0.89
$こ ゙$	-j. ir	- - 1	-1.73	-0.54	-1.92	-1.51	-2.37	-3.04	-4. 62	-4.20	-0.03	0.01
$\because:$	-1.11.	-1. ;	-1.75	-1.01	-1.65	-9.3.1	-0.79	-2.36	-1.31	-0.94	-2.80	-0.12
$\therefore \lambda$	-1.75	- .	-2.27	-3.19	-2.30	-0.79	-1.3y	-2.94	-2.96	-1.33	-3.58	-0.68
2c:	-1.61	-....	$-2 .+1$	-2.03	-2.07	-0.45	-1.14	-2.52	-2.95	-1.56	-2.97	-0.27
13	-3.11	-1. 7	-1.86	-2.12	-1.71	-0.34	-0.78	-2.24	-1.92	-0.74	-2.54	-0.10
טF:	-1. 7	-1. \because	-2.15	-1.85	-2.05	-0.36	-1.05	-2.42	-2.02	-1.09	-3.06	-0.20
Itis	-1.47	-2. 5.1	-2.46	-2.80	-3.70	-0.4.	-0.81	-2.37	-2.90	-0.85	-2.69	-0.22
If	$-1 .+0$	-1. 56	-1.14	-1.34	-1.c6	-0.26	-0.14	-2.25	-1.14	-0.64	-2.66	-0.01
:i	$-1 .+3$	-2.45	-2.95	-2.51	-2.60	-0.62	-1.13	-2.69	-2.54	-1.45	-3.50	-0.43
J.	-3.70	-2.24	-1.49	-1.33	-1.53	-0.09	-0.69	-2.15	-1.57	-0.82	-2.55	0.10
PIS	-0.31	-0.49	- 1.ca	-0.84	-3.02	-0.42	-0.04	-2.54	-3.33	-0.46	-0.94	-0.02
J2:	0.28	-). 13	-0.14	-0.04	-0.16	-0.47	0.02	-2.14	-0.13	0.08	-0.99	-0.14
Nù	-0. 01	-0.67	-0.ct	-0.07	-0.02	-2.53	-0.14	-0.95	-0.35	0.29	-1.29	0.02
NJ	0.37	-3. is	-2.11	-C. 73	-0.79	-0.49	-0. 28	-1.87	-1.01	0.27	-1.22	0.03
Sad	U. 31	-0.12	-0.71	-3. 27	-0.98	-0.23	-0.27	-1.05	-0.80	0.09	-1.22	-0.15
jui	0.05	-0. 24	-1.t.	-2.41	-1.00	-3.46	-1.30	-3.36	-2.48	-0.21	-0.09	-0.25
is	0.50	-0.72	-2.74	-1.40	-1.21	-0.05	-1.57	-3.09	-0.18	-0.01	-0.83	0.10
PJial	-0.25	-1.07	-1.73	-1. 36	-1.48	-0.33	-0.92	-2.60	-1.11	-0.41	-1.60	-0.03

TABLEE． 2 （CONT．）

	355	301	$3 \in 2$	371	372	381	382	383	384	384	TOT
Ala	－2．1J	0.12	0.26	－0．06	－1．14	0.08	－0．36	0.22	－0．54	－0．09	－0．78
Aía	－3．94	－2．00	－3．74	－0．51	－1．32	－7．13	－4．15	－3．22	－1．89	－4．39	－2．05
ご）	-4.04	－2．53	－3．35	－1．20	－0．03	－4．43	－1．53	－5．51	－0．49	－2．97	－1．67
Eご	－1．31	－1．09	－1．82	-1.38	－0．51	－1．82	－2．03	－1．50	－1． 72	－2．67	－1．63
3LX	－2．33	－1．68	－2．10	－2．01	－1．03	－2．23	－2．70	-2.11	－3．42	－2．63	－2．48
JLN	－2．11	－1．57	－1．95	－1．75	－1．69	－1．97	－2．18	－1．98	－1．31	－3．66	－1．99
FF	－1． 36	-1.43	－1．86	－1．45	－0．51	－1．70	－1．91	－1．61	－1．89	－2．71	－1．47
Gfi	－1．72	－1． 56	－1．94	－1．52	－0．60	－2．02	－2．17	－1．59	－2． 22	－3．23	－1．87
Ife	－1．38	－1．34	－1．90	－1．54	－1．64	－1．89	－1．94	－2．01	－1．26	－4．29	－2．14
I I	－0．76	－0．18	－1．51	－1．03	－0．43	－1．74	－1．66	－1．02	－0． 56	－2．87	－1．35
$N:$	－2．07	－1．11	－1．77	－1．72	－1．15	－2．06	－2．45	－2．14	－2．00	－3．49	－1．97
12	－0．90	－0．38	－1．84	－1．26	－0．23	－1．65	－2．00	－1．22	－1．67	－1．56	－1．48
？ $\mathrm{I}^{\text {d }}$	－0．11	－0．57	－2．17	－1．43	－0．45	－1．25	－2．44	－3．46	－1．94	－4． 52	－1．1？
Jeis	－3．20	0.11	－1． 58	－0．54	－0．05	－1．19	－3．20	－1．73	－4． 15	－1．15	－1．07
A．	0.30	－0．57	－1．27	－0．70	－4．74	－1．89	－4．67	－0．78	－0．39	－1．66	－0．64
8， 8	－3．31	－0．07	－1．91	－0．45	－0．20	－1．26	－3．31	－1．23	－1．07	－1．20	－0．60
303	-3.47	－0．15	－1．84	－1．10	－0．38	－0．92	－1．52	－2．19	－2． 96	－1．42	－0．88
ixi	－3．29	－0．92	－1．27	－0．64	－2．11	－0．74	－0．58	－0．35	－0．66	－0．49	－0．65
3	－9．02	－3．00	－3．55	－0．77	－0．34	-1.85	－1．47	－1．40	－0．42	－2．99	－0．87
ijual	－1．02	－1．44	－2．47	－C． 36	－0．38	－1．83	－1．33	－1．66	－1．48	－2．48	－1．21

TABLE E. 3
PERCEMTAGE CHAKGES IM HOGE PMICES UVDPR RLEXIBLE EXCHAYGE RATES ©Y ISEC SECTOR IN TYE MAJOR INDUSTAIALIZED COUNTRIES CTE TO TARIPF REDDCTIOMS IM THE BTM

	1	310	321	122	323	324	331	332	341	342	354	358	355	361	362
ALA	-3. 37	-0.06	-3. 16	- -1.10	-C.f7	-0.73	-0.15	-0.23	-0.06	-0.02	-0.08	-0.02	-0.39	-0.02	-0.02
- TA	-). <	-0.18	-0.64	-3.0	-C.	-0.72	-0.63	-0.65	-0.67	-0.49	-1.02	-0.33	-1.44	-0.61	-0.71
こロ0	-3. 36	-0.18	-0.40	-0. 36	-0.40	-0.66	-0.33	-3.47	-0.3y	-0.59	-0.17	-0.02	-0.95	-0.44	-0.60
EC	-J. 3	-0. 30	-0.48	-3.59	-0.46	-0.41	-0.28	-0.42	-0.40	-0.27	-0.70	-0.13	-0.55	-0.24	-0.24
-LX	-3. 36	-0.88	-1.17	-1.54	-1.69	-0.92	-0.89	-0.93	-1.20	-0.75	-1.8.4	-0.58	-1.50	-0.70	-0.77
DEX	-3. 24	-0.49	-0.95	-1.11	-0.67	-0.82	-0. 55	-0. 80	-0.99	-0.59	-1.26	-0.27	-1. 22	-0.49	-0.60
78	-3. 12	-0.19	-0.46	-3.51	-0. 27	-0.38	-0. 22	-0.36	-0.36	-0.23	-0.64	-0.09	-0.57	-0.22	-0.20
GPE	-3.58	-0. 50	-0.72	-0.75	-0.t4	-0.56	-0.37	-0.47	-0.47	-0. 30	-0.82	-0.17	-0.72	-0.31	-0.27
IEE	-3. 17	-0.39	-0.74	-1.02	-0.6P	-0.70	-0.40	-0.62	-0.84	-0.49	-1.08	-0.19	-0.81	-0.44	-0.44
15	-3. 33	-0.26	-0.23	-3. 24	-0.31	-0.24	-0.09	-0. 16	-0.19	-0.13	-0.51	-0.04	-0.30	-0.08	-0.12
15	-3. 55	-0.58	-1.14	-1.40	-C.52	-0.91	-0.60	-0.93	-0.86	-0. 52	-1.45	-0.40	-1.05	-0.52	-0.53
UK	-3. 24	-0.23	-0.28	-3. 33	-0. 3	-0.25	-0.23	-0.20	-0.27	-0.15	-0.39	0.01	-0.27	-0.08	-0.16
FII	-3. 12	-0.15	-0.20	-3.30	-0.59	-0.66	-0.01	-0. 35	-0.17	-0. 17	-0.36	-0.07	-0.19	-0.18	-0.46
JPI	$) .01$	-0.00	-0.08	-0.04	-C.C7	-0.05	-0.00	-0.03	-0.33	-0.02	-0. 11	-0.05	-0.06	-0.02	-0.02
12	0.26	0.02	-0.20	-0.25	-0.C7	-0.13	-0.00	-0. 18	-0.10	-0.06	-0.40	-0.04	-0.16	-0.15	-0.15
108	-0.01	-0.11	-0.74	-0.62	-0.24	-0.37	-0.10	-0.39	-0.19	-0.13	-0.47	0.02	-0.33	-0.11	-0.38
300	-3. 29	-0.11	-0.32	-0.25	-C.3E	-0.30	-0.10	-0.28	-0.20	-0. 12	-0.48	-0.12	-0.26	-0.12	-0.34
S 42	-3. 13	-0.14	-0.51	-3.84	-0.44	-0.62	-0.54	-0.61	-0.51	-0.24	-0.08	-0.16	-0.21	-0.25	-0.34
US	J. 36	0.00	-0.11	-0.17	-0.11	-0.13	-0.14	-0.08	-0.05	-0.04	-0.03	0.03	-0.09	-0.11	-0.06
foral	-3. 10	-0.14	-0. 27	-0.33	-0. 23	-0.31	-0.16	-0.24	-0.18	-0.13	-0.33	-0.05	-0.31	-0.17	-0.16

TABLE E. 3 (CONT.)

	311	372	3 HI	392	38?	384	381	2	4	5	6	7	8	9	Ior
114	- J. 34	- - . ${ }^{\text {d }}$	-0.07	-0.17	-C.C2	-0.17	-0.08	-0.00	-0.01	-0.05	-0.01	-0.01	-0.02	-0.02	-0.05
ATA	-3.4 3	-0.00	-1.3A	-1.04	-0.98	-1.19	-1. 52	-0.28	-0.23	-0.66	-0.22	-0.19	-0.32	-0.28	-0.50
	-3. 24	-0.09	-0.58	-0.50	-0.90	-0. 3 F	-1.00	007	-0.08	-0.34	-0.11	-0.08	-0.16	-0.12	-0.20
EC	-). ${ }^{1}$	-3.41	-0.35	-0.34	-C. 34	-0.59	-0.67	-0.01	-0.08	-0.22	-0.10	-0.07	-0.12	-0.14	-0.24
aLK	-J. 05	-0.00	-1.07	-1.01	-1.c6	-2.11	-1.17	-0.74	-0.28	-0.63	-0.26	-0.23	-0.36	-0.35	-0.65
DE4	-3.31	-i. 67	-0.85	-3.50	-0.92	-0.89	-1.30	-3. 25	-0.22	-0.47	-0.20	-0.16	-0.28	-0.27	-0.42
PR	-0.22	-0.20	-0.33	-3.39	-C. 32	-0.59	-0.53	-0.03	-0.37	-0.19	-0.08	-0.06	-0.11	-0.11	-0.20
GPa	-3. 23	-0.26	-0.37	-3.36	-0.34	-0.68	-0.92	-0.15	-0.13	-0.26	-0.13	-0.10	-0.18	-0.18	-0.33
18E	-3. 42	-0.74	-0.98	-3.70	-C.78	-0.81	-1.30	-0.14	-0.07	-0.47	-0.14	-0.08	-0.15	-0.22	-0.34
IT	-3. 11	-0.17	-0.21	-3.21	-C.19	-0.22	-0.43	0.01	-0.04	-0.12	-0.06	-0.04	-0.08	-0.09	-0. 16
WL	-1. 52	-. . 59	-0.79	-3.74	-0.79	-1.16	-1.27	-0.50	-0.17	-0.47	-0. 18	-0.15	-0.23	- 0.26	-0.46
リ8	-3.39	-0. 56	-0.19	-0.22	-0.17	-0.43	-0.41	0.10	-0.01	-0.11	-0.05	-0.03	-0.06	-0.08	-0.13
PIV	-J. 30	-0.18	-0.43	-0.55	-0.94	-0.90	-1.11	-0.04	-0.07	-0.24	-0.10	-0.08	-0.14	-u. 14	-0.20
JPM	-3. 33	-0.32	-0.34	-3.04	-0.C5	-0.15	-0.10	-0.05	-0. 32	-0.03	-0.01	-0.02	-0.02	-0.02	-0.03
12	-3.34	-1.22	-0.4 4	-0.17	-0.37	-0.37	-0.49	0.01	-0.02	-0.24	-0.05	-0.03	-0.06	-0.07	-0. 19
vue	-3. 17	-0.09	-0.43	-0.59	-0.42	-0.63	-0.47	0.16	-0.04	-0.21	-0.08	-0.06	-0.11	-0.11	-0.14
3d0	-3. 28	-0. <0	-0.35	-0. 11	-0.62	-1. 16	-0.52	-0.11	-0.09	-0.19	-0.08	-0.08	-0.11	-0.11	-0.21
312	- J. 21	-0.51	-0. 32	-3. 26	-0.21	-0.42	-0.27	-0.23	-0.12	-0.21	-0.08	-0.08	-0.12	-0.09	-0. 18
JS	- ${ }^{\text {. }} 3$.	-0.04	-0.07	-3.07	-0.13	-0.09	-0.42	0.07	-0.21	-0.07	-0.02	-0.02	-0.03	-0.09	-0.04
ICTAL	-3. 11	-0.11	-0.22	-0.20	-0.34	-0.31	-0.46	0.04	-0.34	-0.15	-0.05	-0.04	-0.06	-0.08	-0. 12

table e．y

by ISIC SECTOR IY THE hAJUR IMDOSTBIALIZED CUOHTEIES

 fHe to taripe redoctions in the atm| | 1 | 310 | 321 | 322 | 3ご | 324 | 331 | 332 | 341 | 342 | 354 | 358 | 355 | 361 | 362 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALA | －0．11 | －0．09 | －0．24 | －0．09 | －3．71 | －0．67 | －0．23 | －0．53 | －0．07 | －0．00 | －0．09 | －0．06 | －0．77 | －0．01 | 0.04 |
| ATA | －3． 26 | －0．37 | －1．31 | －3．36 | －1．16 | －0．79 | －1．11 | －0．61 | －1．22 | －0．57 | －1．68 | －0．57 | －2．39 | －0．97 | －1．74 |
| cad | －0．09 | －0．21 | －0．74 | －0．41 | －1．67 | －0．97 | －0．63 | －0．82 | －c． 81 | －1．07 | －0．13 | 0.00 | －1．82 | －0．89 | －1．64 |
| $8 C$ | －3．49 | －0．57 | －0．87 | －0．94 | －1．11 | －0．37 | －0．39 | －0．75 | －0．78 | －0．30 | －1．28 | －0．13 | －0．74 | －0．34 | －0．54 |
| BLX | －1． 32 | －1．40 | －2．27 | －2．71 | －1．57 | －0．84 | －1．39 | －1．42 | －2．47 | －0．87 | －3．57 | －0．68 | －2．04 | －0．98 | －1．86 |
| DEI | －3．50 | －0．84 | －2．00 | －1．70 | －2．c6 | －0．56 | －0．90 | －1．45 | －2．09 | －0．67 | －2． 28 | －0．27 | －1．80 | －0．71 | －1．44 |
| PR | －3． 18 | －0．30 | －0．83 | －0．32 | －C． 57 | －0．37 | －0．31 | －0．71 | －0．69 | －0．27 | －1．16 | －0．09 | －0．83 | －0．32 | －0．41 |
| GPa | －1．04 | －0．67 | －1．23 | －1．14 | －1．54 | －0．49 | －0．50 | －0．89 | －0．89 | －0．34 | －1． 50 | －0．19 | －1．01 | －0．47 | －0．57 |
| IRE | －3． 45 | －0．59 | －1．58 | －1．78 | －1．ep | －0．60 | －0．57 | －1．02 | －1．82 | －0．54 | －2．01 | －0．21 | －1．02 | －0．72 | －1．00 |
| IT | －3．44 | －0．48 | －0．41 | －0．38 | －0．72 | －0．26 | －0．10 | －0．24 | －0．33 | －0．14 | －0．90 | －0．02 | －0．38 | －0．09 | －0．27 |
| H | －3．67 | －0．91 | －2．55 | －2．21 | －2．58 | －0．72 | －0．86 | －2．01 | －1．70 | －0．56 | －2．75 | －0．42 | －1．28 | －0．76 | －1．19 |
| 0K | －3． 34 | －0．46 | －0．47 | -3.56 | －0．7e | －0．22 | －0．33 | －0．34 | －0．54 | －0．17 | －0．70 | 0.05 | －0．34 | －0．10 | －0．41 |
| FII | －3．13 | －0．17 | －0．51 | －0．43 | －2．59 | －0．59 | －0．01 | －0．78 | －0．36 | －0．19 | －0．63 | －0．04 | －0．16 | －0．24 | －1．38 |
| JPI | 3.34 | －0．00 | －0．09 | －0．04 | －0．11 | －0．00 | －0．00 | －0．06 | －0．03 | －0．02 | －0．19 | －0．11 | －0．07 | －0．01 | －0．06 |
| 48 | J． 25 | 0.32 | －0．64 | －0．24 | －0．C2 | －0．21 | －0．01 | －0． 19 | －0．12 | －0．02 | －0．71 | 0.01 | －0．07 | －0．20 | －0．37 |
| 108 | J． 32 | －10． 12 | －1．63 | －0．69 | －0．7e | －0．45 | －0．13 | －0．80 | －0．33 | －0．10 | －0．87 | 0.03 | －0．32 | －0．10 | －1．11 |
| SUD | －3．04 | －0．11 | －0．11 | －3．26 | －0．98 | －0．28 | －0． 12 | －0．57 | －0．29 | －0．11 | －0．85 | －0．14 | －0．27 | －0．12 | －1．07 |
| 342 | －3． 30 | －0．15 | －1．03 | －1．69 | －C． 56 | －2．31 | －0．96 | －1．71 | －1． 16 | －0．23 | －0．08 | －0．24 | －0．26 | －0．43 | －0．90 |
| US | J． 39 | －0．01 | －0．19 | -9.30 | －0．43 | －0．11 | －0．27 | －0．08 | －0．05 | －0．04 | －0．05 | 0.05 | －0．14 | －0．24 | －0．16 |
| total | －3． 15 | －0．23 | －0．49 | －3．53 | －0．92 | －0．32 | －0．26 | －0．41 | －0．34 | －0．15 | －0．59 | －0．05 | －0．46 | －0．27 | －0．37 |

	311	372	381	382	3E	384	381	2	4	5	6	7	8	9	SOT
4LA	-0.04	-0.08	-0.06	-3. 17	0.04	-0.26	-0.08	-0.00	-0.01	-0.05	-0.01	-0.01	-0.02	-0.02	-0.07
ATA	-3. 35	-0.91	-2.61	-3.36	-1.79	-1.62	-4.36	-0.28	-0.23	-0.66	-0.22	-0.19	-0.32	-0.28	-0.73
こnd	-3.39	-0.03	-1.05	-1.27	-2.15	-0.43	-2.95	0.07	-0.08	-0.34	-0.11	-0.08	-0.16	-0.12	-0.29
EC	-0.40	-0.35	-0.50	-0.95	-0.56	-0.89	-1.89	-0.01	-0.08	-0.22	-0.10	-0.07	-0. 12	-0.14	-0.37
BLX	-1.99	-1.02	-1. 42	-2.69	-1.c0	-3.41	-2.61	-0.74	-0.28	-0.63	-0.26	-0.23	-0.36	-0.35	-0.98
DEM	-1.51	-1.19	-1.15	-1.61	-1. 52	-1.17	-3.64	-0.25	-0.22	-0.47	-0.20	-0.16	-0.28	-0.27	-0.62
78	-3.51	-0.31	-0.44	-1.24	-0.56	-0.89	-1.41	-0.03	-0.07	-0.19	-0.08	-0.06	-0.11	-0.11	-0.30
GFE	-3. 45	-0.42	-0.54	-0.93	-0.53	-1.02	-2.80	-0.15	-0.13	-0.26	-0.13	-0.10	-0.18	-0.18	-0.50
IRE	-3. 33	-1.54	-1.62	-1.93	-1.42	- 1.04	-3.59	-0.14	-0.07	-0.47	-0.14	-0.08	-0.15	-0.22	-0.52
19	-3. 24	-0.30	-0.30	-0.61	-0.30	-0.28	-1.26	0.01	-0.04	-0.12	-0.06	-0.04	-0.08	-0.09	-0.25
$1 i$	-3.97	-0.44	-1.16	-2.07	-1.39	-1.72	-3.47	-0.50	-0.17	-0.47	-0.18	-0.15	-0.23	-0.26	-0.69
UK	-3. 22	-0.11	-0.27	-0.67	-C. 31	-0.67	-1.20	0.10	-0.01	-0.11	-0.05	-0.03	-0.06	-0.08	-0.20
PIV	-3.69	-0.20	-0.59	-1.45	-2.09	-1.39	-3.53	-0.04	-0.07	-0.24	-0.10	-0.08	-0.14	-0.14	-0.31
JPI	-3.33	-0.03	-0.05	-0.27	-0.10	-0.25	-0.31	-0.05	-0.02	-0.03	-0.01	-0.02	-0.02	-0.02	-0.05
12	-3. 49	-2.04	-0.68	-2.64	-C.47	-0.38	-1.14	0.01	-0.02	-0.24	-0.05	-0.03	-0.06	-0.07	-0.15
yoz	-3. 34	-0.19	-0.71	-2.18	-0.80	-0.94	-1.19	0.16	-0.04	-0.21	-0.08	-0.06	-0.11	-0.11	-0.22
SHD	-3. 75	-0.34	-0.43	-1.37	-1.39	-1.93	-1.41	-0.11	-0.09	-0.19	-0.08	-0.08	-0.11	-0.11	-0.32
312	-3. 16	-:.03	-0.43	-0.58	-C. 27	-0.61	-0.49	-0.23	-0.12	-0.21	-0.08	-0.08	-0.12	-0.09	-0.27
US	-3. 35	-0.08	-0.12	-3. 19	-0.26	-0.12	-1.41	0.07	-0.01	-0.07	-0.02	-0.02	-0.03	-0.04	-0.06
rotal	-3. 22	-0.18	-0.33	-0.55	-0.44	-9.45	-1.41	0.04	-0.04	-0.15	-0.05	-0.04	-0.06	-0.08	-0. 18

TABLER. 5

CHANGES IN EXPORTS UNDER PLEXIBLE EXCHAMGE RATES BY ISIC ©ECTOR IN THE MAJOR INDUSTHIALIZED COUATRIES

	1	310	321	322	323	324	331	332	341	342	354	358
ALA	0.9	5.8	-9.0	0.1	10. 2	0.2	0.5	0.1	-0.1	0.2	8.3	-19. 1
ira	0.5	3.9	26.8	16.7	1.5	9.0	10.2	3.5	17.6	1.6	17.2	6.1
こND	1 t. 5	14.4	2.1	12.0	5.8	8.3	31.5	0.2	112.6	2.3	20.4	26. 1
E=	51.6	372.7	529.8	468.3	75.3	43.8	18.6	125.2	83.4	45.5	935.2	-11.1
	3.6	26.2	111.5	59.1	4.2	0.4	1.2	14.9	15.3	2. 1	125.9	-36.4
UEN	4.1	30.3	13.3	20.4	7.2	2.1	1.4	9.6	3.9	1.2	18.2	0.:
ER	14.3	67.0	65.3	83.8	13.5	9.9	5.0	11.1	15.7	9.5	141.2	27.5
GFR	5.4	85.2	14E. 7	104.8	16.9	8.1	6.8	43.1	19.8	11.1	289.2	-2. 5
IRE	1.2	14.6	10.R	10.6	2. 1	1.1	0.2	0.7	1.3	0.7	8.7	-0.7
II	6.9	27.0	2c.8	77.3	9.7	14.7	1.5	26.4	2.8	4.6	606	12. 5
N:	13.6	62.8	101.9	67.9	7.4	3.6	0.9	9.2	13.6	3.0	159.3	-52. 5
UK	2.6	57.6	$+4.4$	44.4	14.3	3.9	1.6	10.3	11.0	13.3	131.9	40.9
FIN	0.3	1.7	1.5	15.4	7.7	4.1	4.4	2.8	16.0	0.7	4.5	1.0
J?	2.2	-0.4	-36.4	0.1	-1.8	-3.5	0.2	1.7	-4.0	0.9	40.0	-0.7
Z	0.0	4.9	12.2	1.2	0.9	-0.0	0.5	0.3	1. 2	0.1	0.5	0.1
MJR	1.9	2.9	4.7	3.7	1.5	0.3	0.9	2.4	7.7	0.3	10.8	2.2
Swo	0.8	-0.2	C. 9	2.7	0.4	-0.2	1.3	7.4	-11.7	0.8	13.5	-2. 6
SdZ	0.3	-2.3	4.9	11.1	-0.7	-0.2	0.7	1.9	1.1	1.6	24.0	-4.4
J	70. 3	65.1	35.4	32.2	18.7	1.4	34.6	13.3	35.7	18.0	204.1	136.0
rJIAL	149.8	468.5	572.7	563.4	119.4	63.1	103.4	158.8	259.4	71.8	1278.4	133.7

	355	361	362	371	372	381	382	383	384	381	205
ALA	0.2	1.5	0.1	－0．9	32.2	2.4	－0．4	1.0	1.0	8.3	49.7
AIA	8.2	8.2	2.2	23.8	5.1	21.8	43.0	24． 2	13.8	52.8	317.6
ごロ	13.3	24.9	2.7	12.2	30.3	17.6	61.5	32.3	112.9	205.6	764.1
Eこ	189.7	103.7	＋1．3	200.0	42.9	417.2	473.1	393.6	708.0	860.4	6168.2
BLX	18.4	3.8	4.1	28.8	－2．9	34.9	26.8	27.8	106.5	61.8	637.9
DEM	2． 1	3.1	C． 8	3.2	1.9	10.8	25.2	12.2	6.6	36.6	214.3
FR	52.3	17.6	11.7	80.3	13.2	73.8	119.2	75.8	171.5	139.9	1223.1
GF	$+5.6$	23.7	10.2	36.0	8.7	137.2	127.8	137.5	238.7	222.2	1729.3
IRE	2.5	1． 5	C． 4	0.3	2.1	4.4	4.6	3.9	1.5	11.1	84.3
IT	20.5	24.0	5.3	19.2	3.2	64.6	46.0	32.2	46.7	76.5	614.1
NL	19.8	5.6	2.4	4.3	6.3	26.3	25.0	39.3	40.0	132.2	691.8
UK	28.4	13.9	t． 3	27.9	10.4	65.1	98.6	65.0	96.5	179.9	973.5
PIS	0.4	0.8	C． 9	4.3	2.5	6.8	13.7	8.5	16.0	9.9	123.8
JRN	15.3	10.6	2.0	－25．0	－2．8	52.0	-11.0	94.7	102.6	88.3	325.5
AZ	0.1	0.1	C． 1	0.2	9.1	1.0	1.6	0.4	0.4	6.7	42.1
W）	1.0	2.6	0.3	11.2	12．8	8.0	10.5	6.9	24．3	13.3	130.2
340	3.6	1.9	1.1	14.7	2.4	23.5	32.0	34.1	73.8	25.4	225.5
Sid 2	0.7	1.0	0.4	－0．6	2.7	13.6	－6．5	11.7	1.4	32.3	94.5
JS	29.5	28.8	11.9	43.5	25.6	101.1	229.7	189.7	258.2	401.5	1984.3
IOTAL	263.3	134.2	63.0	283.4	162.8	665.1	847.2	797.1	1312.4	1704.4	10225.4

TABLE E． 6
CHANGES IN IMPORTS DNDER FLEXIBLE EXCHANGE EATES
BY ISIC SECTOR IN THE HAJOR INDUSTRIALIZED COUATRIES
CDE TO TARIPP REDUCTIOMS IM THE GTY

	1	310	321	322	323	324	331	332	341	342	351	35B
ALA	5.9	4.6	0.4	－0．2	0.8	－0．5	2.9	9.2	0.5	－0．9	－0．2	0.2
Ara	1． 8	-1.0	21.1	－0．4	4.2	0.9	0.9	－0．6	7.2	0.9	35.7	10． 5
こ～D	6.9	8.0	16.3	7.3	4.6	5.1	16．9	18.0	36.3	48.9	－9．4	－2． 0
E＝	287． 1	441.4	394.2	375.8	76.0	－2．3	42.8	119.7	188.2	27.4	1131.6	－25．6
BLX	23.7	48.6	67.3	41.3	3.1	0.0	1.6	17． 5	14.7	3.2	75.5	6.6
DE®	11.9	14.7	19.7	9.5	7． 3	－0．2	2.8	4.5	8.7	2.0	31.6	－2．0
P8	27.4	56.3	61.3	64.9	11.6	0.4	8.0	31.8	35.6	6.8	224． 1	－2． 1
GPR	108．8	91.2	8¢． 3	137.6	23.0	-1.7	14.1	32.2	53.6	5.4	311.7	-4.6
IRE	3.5	7.2	10.6	7.2	1.2	－0．1	0.5	1.0	3.1	0.4	13.5	0.1
IT	47.6	51.2	39.3	16.7	13.7	0.0	1.8	3.0	11.7	0.9	175.7	－15．6
WL	35.4	60.0	68．4	55.7	5.9	0.0	4.6	17．3	20.1	4.2	117.6	8.1
UK	28.8	112.2	38.1	43.0	10.2	－0．8	9.3	12.3	40.6	4.6	181.8	$\wedge 16.1$
PI	0.9	0.5	7.3	2.0	2.7	－0．0	0.6	1.2	3.0	0.3	7.8	－2． 1
J P シ	－23．8	－0．3	C． 1	－0．0	－1．0	1.3	－1．1	5.0	1.0	-0.3	58． 8	26．9
± 2	0.5	0.1	3.2	－0．0	0.0	0.4	0.1	0.0	0.2	-0.5	8.5	－0． 3
132	－2．0	0.2	6.7	2.4	0.7	0.2	0.7	4.4	2.8	－0．6	11.5	－1． 1
S』J	－4．7	－0．8	3.9	0.9	0.2	0.0	0.9	3.1	1.6	－0．5	21.0	－0． 8
$S \pm 2$	－2．4	0.2	5.8	24.6	－2． 2	8.7	2.2	12.8	6.5	－0． 1	3.4	1． 4
J5	－43．7	39.3	36.5	166.2	12.6	－2． 2	53.4	0.0	7.7	－0．3	52.9	－49．4
PJT1L	226.5	492.2	495．5	¢ 78.6	98.7	11.6	120.3	172.8	255.0	74.2	1321． 5	－42． 4

TABLE E. 6 (COMT.)

	355	361	362	371	372	381	382	383	384	381	209
1LA	17.2	-0.6	-0.4	0.1	0.7	-1.6	5.0	-3.7	18.7	0.8	58.8
AIA	15.2	10.5	2.7	0.4	3.6	68.2	39.1	33.5	25.6	26.0	305.9
Crd	80.4	19.2	7.6	7.4	1.4	136.4	67.8	179.8	59.0	52.9	768.7
E2	133.1	96.7	38.1	222.6	79.3	321.1	462.8	332.9	803.8	609.9	6156.4
BLI	10.0	10.7	2.4	10.7	13.6	30.3	50.1	31.5	113.5	50.4	626.4
DEM	4.0	4.2	1.3	5.9	2.8	11.9	18.2	14.6	16.4	17.1	206.9
PR	25.5	28.3	8.6	52.0	14.1	68.8	99.0	67.0	204.7	130.4	1224.5
GPR	48.4	40.7	12.2	72.6	24.3	89.0	106.0	93.5	230.8	188.7	1766.9
IRE	1.5	1.0	0.5	2.3	0.7	1.9	6.2	4.5	4.2	11.7	82.6
17	10.8	1.4	4.3	32.9	6.0	30.2	13.8	28.2	28.2	69.1	601.0
-	16.4	6.8	3.7	18.0	7.0	41.6	48.3	51.4	59.6	53.6	703.8
UK	16.6	3.5	E. 1	28.2	10.9	47.4	91.0	42.3	146.4	88.9	944.3
PIN	0.1	0.8	0.6	4.6	1.1	5.6	19.3	20.0	22.1	18.1	116.5
JPI	2.6	-1.7	2.1	3.5	6.0	9.6	60.6	37.9	117.9	51.0	356.3
± 2	-0.9	0.5	0.3	0.4	2.4	5.1	13.2	1.7	1.2	2.7	38.7
リ3:	0.2	-0.1	C. 9	3.0	3.0	10.0	32.2	8.8	29.5	4.1	117.5
Sid	0.8	0.3	1.9	10.9	3.2	11.5	28.8	34.7	91.3	11.0	219.1
3il	0.3	2.4	C. 8	2.7	4.6	4.7	3.4	2.7	6.5	6.7	95.6
0 S	45.8	77.5	12.0	27.5	24.5	120.4	110.8	201.0	145.2	1044.4	2082.1
roral	294.7	205.6	66.6	287.0	129.7	690.9	843.0	849.1	1321.0	1827.5	10315.6

TABLE E. 1
absjlyte chances in egplcinemt oyjer fuexible exchayge eates By ISIC Sector : H the hajor imdustrialized countaies due to agricultufal concessious iataz aty

	1	310	321	322	$32 ?$	324	331	332	341	342	351	358	355	36a	362
164	-3.502	0.112	J. 342	C. 002	0.114	0.000	0.010	0.001	0.010	0.007	0.030	0.007	0.008	0.007	0.003
414	J. 413	0.401	-0.105	-0.052	-0.c16	-0.026	-0.011	-0.004	-0.012	-0.004	-0.024	-0.007	-0.009	-0.017	0.002
CH0	$-1.1 .2$	U.131	0.015	0.010	0.1007	0.003	0.348	0.302	0.152	0.011	0.025	-0.014	0.012	0.016	0.006
EC	-14.357	4.942	0.345	-C.196	0.667	-0.107	0.184	0.012	0.219	0.075	0.207	-0.210	0.039	-0.010	0.124
317	-0.424	0.612	J. 16P	-0.343	$0.61{ }^{\text {c }}$	-0.004	C. 050	-0.003	0.004	0.000	-0.001	-0.039	-0.004	-0.012	0.003
DEリ	-0.341	0.359	-0.017	-0.318	-0.CC4	-0.003	-0.004	-2.007	0.003	0.002	-0.006	-0.006	-0.001	-0.006	0.002
PE	-4.251	0.778	J. 074	0.313	0.025	0.002	0.033	0.007	0.048	0.018	0.078	-0.054	0.026	0.007	0.031
GFE	-3.155	ᄂ. 321	0.049	-0.020	0.122	-0.005	0.052	0.006	0.058	0.012	0.073	-0.037	0.004	-0.002	0.032
IRE	- -375	0. 3.46	J. 010	0.305	0.603	0.001	0.002	0.301	0.004	0.002	0.005	-0.001	0.001	0.004	0.003
IT	-3.134	0.509	-1.140	-0.116	-0.cal	-0.092	0.005	0.004	0.022	0.006	-0.006	-0.035	0.000	-0.002	0.023
NL	-u. 9.4	0.157	0.044	-0.909	0.106	-0.002	0.022	0.001	0.020	0.013	0.016	-0.010	0.003	-0.000	0.008
UK	-1.305	0.580	J.1u0	-0.102	n.cal	-0.002	0.023	0.004	0.060	0.022	0.047	-0.029	0.010	0.001	0.023
PII	J. 308	U. 353	- 3.050	-0.077	$-3 . c 20$	-0.009	-0.066	-0.008	-0.006	-0.001	-0.013	-0.004	-0.003	-0.005	-0.000
JP4	-17.630	2.298	J. 705	0.779	$0.6 \leq 7$	0.003	0.175	-0.003	0.154	0.001	0.110	-0.022	0.032	0.012	0.026
82	J. 135	0.101	-J.030	-0.303	-J. 0.13	-3.000	-0.006	-0.001	-0.001	0.000	-0.005	-0.001	-0.001	-0.001	0.001
HCB	U. 234	0. 1, 8	-J. 319	-0.0.99	-0.CCR	-3.001	-0.016	-0.003	-0.014	0.002	-0.010	-0.011	-0.002	-0.004	0.001
SdD	- J. 230	-. 664	-J.00t	-0.006	-0.CC2	-0.002	C. 003	-0.000	0.022	0.002	0.002	-0.004	-0.001	-0.000	0.002
St2	- j. Jis).401	-3.023	-0.319	-0.c04	-0.011	0.001	-0.003	0.032	-0.003	-0.037	-0.006	-0.034	-0.007	0.001
US	-1.119	$-1 .<13$	-3.962	-0.505	-0.171	-0.966	-0.332	-0.131	-0.332	-0.257	-0.373	-0.198	-0.159	-0.184	-0.081
rotal	$0.76+$	7. \% 38	-3.0s8	-0.926	-0.c88	-0.216	-C.009	-0.138	0.085	-0.166	-0.088	-0.470	-0.086	-0.195	0.086

TABLEE． 7 （COnt．）

	311	372	381	382	293	384	381	2	4	5	6	7	8	9	SOT
Aid	J．337	C． 029	0.016	0.016	O． 111	0.014	0.049	0.046	0.057	－0．020	－0．005	0.021	\％．019	－0．029	－0．114
ATA	－6．078	－0．013	－ 3.019	$-¢ .026$	－0．c25	－0．007	－0．038	－0．024	－0．004	－0．001	－0．018	－0．001	－0．007	－0．027	0.298
CHD	0．1碞	0.007	J． 02°	0.351	0.017	0.037	0.058	－0．025	0.012	－0．007	0.022	0.038	0.024	0.001	－0．392
EC	－J．J）1	－0．0y5	J． 263	0.518	0．c7	0.153	C． 063	－3．553	0.054	－0．080	－0．006	0.259	0.270	－0．263	－8．537
BLX	－0． 367	－0．026	0.308	－0．034	－0．C18	－0．008	－0．015	－0．045	0.000	－0．020	－0．035	0.023	0.017	－0．071	0.100
DEV	－－．J3d	－0．602	3.001	－0．339	－0．c07	－0．004	－0．017	－0．002	0.001	－0．003	－0．008	0.011	0.002	－0．037	－0．132
PR	j．j＋6	－0．002	J． 076	0.149	0.648	0.374	0.067	－0．030	0.009	－0．038	－0．026	0.042	0.047	－0．080	－2．786
GER	－0．010	－0．029	J． 066	0.108	O．C19	0.033	－0．002	－0．160	0.010	0.007	0.014	0.047	0.078	0.008	－1．762
1هE	J．Jう 2	0.000	0.005	0.0153	$0 . C C 3$	0.302	0.008	－0．001	0.003	－0．001	0.010	0.009	0.034	0.001	－0．541
iT	J． 212	－0．017	J．0د2	0.365	0.111	0.021	0.001	－0．165	0.032	－0．003	－0．028	0.002	－0．008	－0．011	－3．662
リL	U．JJ3	－0．036	0.019	0.018	$0 . C C 1$	0.703	0.002	－0．007	0.037	－0．022	0.014	0.053	0.045	－0．069	0.032
us	0.317	－0．014	$3.05 t$	0.099	0.618	0.033	0.320	－0．144	0.022	0.001	0.053	0.071	0.086	－0．005	0.214
PIM	－3．314	－0．307	－3．005	－0．021	－0． 111	－0．011	－0．015	－0．009	－0．033	0.001	－0．002	0.005	0.001	－0．024	0.781
JPE	0.153	0.019	J． 136	0.173	0.132	0.158	0.322	0.003	－0．011	－0．293	－0．681	0.004	－0．019	－0．611	－14．496
－	－0．031	－3．004	0.001	－0．301	－0．ci2	－0．022	－0．007	－0．002	－0．001	－0．004	－0．006	0.005	－0．001	－0．019	0.193
tus	－3．320	－0．620	－0．005	－0．008	－C．CC7	－0．016	－0．020	－0．021	0.000	0.006	0.010	0.010	0.001	－0．004	0.242
SUD	－v． 312	－0．010	0.008	0.320	$0 . \mathrm{CCl}$	0.004	－0．003	－0．011	0.032	0.006	0.008	0.006	0.009	0.017	－0．160
SUZ	－3． 312	－3．010	－0．009	-0.348	－0．039	－0．002	－0．103	-3.363	0.000	0.000	－0．008	0.018	0.007	－0．018	－0．036
US	－0．372	－0． 215	－0．598	－1．037	－C． 729	－0．603	-1.149	－0．782	－0．435	－0．827	－6．551	－1．042	－3．462	－7．853	11.043
sotal	－J． 267	-3.326	－0．182	-0.340	－0． 577	－0．274	－0．844	－1．441	－0．378	－1．219	－7．235	－0．678	－3．158	－8．831	－11．177

table E.a

absolute cpasces in erplotaent unjer fexible exchamge bates
by ISIC sector in ine anjor indostaialized courtaies
die to iteffalization of goteanimet procureagat if the aty

	1	310	311	322	323	324	331	332	341	342	351	358	355	361	362
ALA	-3.3.3	-0.154	-3.003	-0.003	0.148	-0.004	0.007	0.003	-0.002	0.033	0.066	-0.021	0.021	0.018	-0.004
$1: 4$	-0. 270	-0.034	-0.09p	-0.122	$0.6 C 4$	-0.110	-0.002	0.015	-0.091	0.057	0.048	-0.009	0.024	0.039	-0.032
こッ	U. +10	0.049	-0.200	0.098	-0.ce 4	0.061	0.442	-0.094	0.629	-0. 236	-0.299	0.082	0.160	0.270	0.003
EC	-0.250	0.784	-1.701	-0.897	-2.290	-1.104	-2.974	0.448	-6.034	0.244	-0.785	-0.254	-1.247	-0.462	0.183
BLY	J. 206	J. 157	0.120	0.105	0.634	0.029	-0.214	0.066	-0.465	-0.079	-0.196	0.236	0.034	0.086	0.116
DEY	0.913	0.433	-0.003	0.156	$0 . c \in C$	0.045	-0.076	0.142	-0.294	0.023	-0. 122	0.025	-0.064	0.062	0.021
72	J.032	0.106	0.202	0.212	$0 . \mathrm{ccm}$	0.104	-0.659	-0.164	-0.975	-0.135	-0.033	-0.025	0.012	0.124	0.017
ifa	-0.413	0.100	-1.972	-0.898	-1.956	0.110	-0.596	0.141	-2.151	0.057	-0.599	-0.183	-1.136	-0.281	0.054
162	-3. 325	-0.061	-3.009	-0.025	$0 . C 11$	-0.008	0.001	0.004	-0.006	0.019	0.021	-0.005	0.005	0.019	-0.008
19	-1.096	-0.004	J. 215	-0.045	-C. 5.8	-1.343	-0.636	0.378	-0.765	0.081	-0.113	-0.275	0.011	0.201	-0.012
Li	0.031	0.109	-6.051	-0.039	0.623	0.005	-0.589	-0.165	-0.753	0.019	0.208	0.033	0.053	-0.687	0.004
UX	-3. 235	-0.062	-0.204	-0.362	0.115	-0.045	-0.205	0.046	-0.626	0.259	0.049	-0.060	0.138	0.014	-0.04s
FII	$1.3<4$	0.053	0.181	0.765	-0. 116	0.155	0.458	-0.007	1.532	-0.026	-0.510	-0.046	-0. 161	-0.086	0.045
JPM	-0.637	0.261	-1.074	-0.478	-0.146	-0.066	-0.129	-0.014	-0.190	0.083	-0.105	-0.466	0.100	0.240	0.006
12	-3. 175	-0.067	0.007	-0.007	0.129	-0.002	0.005	0.001	-0.007	0.013	0.015	-0.000	0.006	0.002	-0.001
101	0.752	0.116	-0.206	-0.030	$0 . C C S$	0.031	0.096	-0.023	0.526	-0.124	-0.318	0.109	-0.110	-0.031	0.012
Sad	0.922	0.css	-0.359	0.009	-0. 120	0.112	0.852	-0.097	2. 139	-0.103	-1.143	-0.133	-0.079	-0.002	0.063
Su2	0.309	0.170	0.410	0.063	-0.173	0.229	-0.235	-0.153	-0.551	-0.220	0.723	-0. 162	-0.296	-0.360	0.031
JS	0.705	0.048	0.925	0.076	0.544	-0.030	0.331	0.078	0.016	0.308	0.572	-0.035	0.202	0.314	-0.047
rotal	3. 392	1.280	-2.185	-0.529	-2.165	-0.728	-1. 150	0.157	-2.034	0.028	-1.731	-0.935	-1.380	-0.137	0.220

TAEIEE. 8 (CONT.)

	371	372	381	372	3F3	384	, 81	2	4	5	6	7	8	9	tor
ALA	-0.326	- 3.050	J. 021	0.045	$0 . C P 1$	0.142	0.072	-0.047	0.003	-0.024	-0.025	-0.010	-0.012	-0.028	-0.164
ATA	-0.167	-0.015	0.023	0.119	0.żE	0.103	0.031	-0.027	-0.031	-0.010	-0.003	-0.010	0.001	-0.010	-0.259
± 0	-J. 334	-0.441	0.050	-0.339	$0.15 t$	0.119	-3.975	3.251	0.008	0.041	0.064	0.054	-0.047	0.670	-2.666
EC	-1.193	$-3.1+2$	0.042	2.390	5.710	4.417	5.494	-3.301	0.056	1.630	2.586	-0.034	1.313	3.666	3.230
BLI	-0.213	0.125	-J.012	-0.314	-0.22t	-0.181	0.217	0.140	0.035	0.099	0.291	0.065	0.117	0:345	0.293
Dat	-0. 212	-0.020	-3.060	c. 242	-0.:23	-0.962	0.350	0.005	-0.004	-0.007	0.082	0.003	0.009	0.172	0.299
78	-3.017	-0.229	-3.060	0.233	0.139	0.291	1.040	-9.036	0.030	0.304	0.646	O.CA4	0.323	0.753	3.448
GP8	-0.150	-1.178	J. 151	0.163	4. 352	3.378	1.925	-1.220	$0.0 \$ 2$	0.736	0.982	0.015	0.576	1.594	1.640
ire	0.3.4	-0.004	0.008	0.315	0.100	J. 929	0.321	-0.007	0.032	-0.007	-0.003	-0.001	0.001	-0.007	-0.265
19	-0.019	-1.572	0.132	1.176	0.703	1.106	0.992	-1.475	0.017	0.280	0.232	-0.090	0.108	0.258	-2.200
11	- .301	-3.605	-0. 225	-0.506	$0.1 \leq 0$	0.309	0.198	1.013	-0.026	0.128	0.100	-0.080	0.051	0.223	-1.409
UK	- J. 178	- 0.260	0.109	0.750	0. 3 ¢ ${ }^{\text {c }}$	0.457	1.342	-7.4!6	-0.010	0.098	0.253	-0.030	0.126	0.329	1.424
PIM	-J. 234	3.039	-3.141	-0.517	-0.f12	-0.681	-0.390	-3.060	0.011	0.075	0.222	0.189	0.065	0.271	1.911
JPY	-0.356	0.351	3.012	-1.919	1.771	1.870	-2.499	-3.482	0.131	0.829	2.230	0.317	C. 56	2. 119	1.908
12	0.301	-0.033	0.307	0.008	0.115	0.029	0.026	2. 300	0.301	-0.006	-0.002	-2.001	0.000	-0.009	-0.111
due	0.225	0.347	-3.234	-0.051	-3.629	-0.898	-0.218	J. 235	0.011	-0.026	0.003	0.091	0.004	0.086	-0.753
د 0^{0}	1.137	0.100	0.202	-0.121	-1.144	-0.391	-0.854	-0.236	0.033	0.143	0.371	0.292	0.147	0.673	2.561
3U2	- 0.095	0.048	-3.384	-5.219	-0.374	-2.720	1.712	-1.475	0.028	0.271	0.044	-0.294	-0.178	0.302	-9.155
JS	0.230	0.377	0.333	1.907	-3.435	0.023	-3.730	0.101	0.074	0.049	0.662	0.152	0.318	0.811	1.636
rutal	-1.124	-2.573	-0.074	-5.736	1.612	2.024	-4.340	-4.740	0.465	2.973	6.152	0.745	2.069	8.551	- 1.863

TABLE R. 9
Ey ECIC SFCTOD IN TYE GAJOP INDJSTRIALIEED COUNTRIES
D"E TO THE COMBIXED EFFECTS OP REDJCTIUMS IM TAPIPFS
AKD NTBS IM THE MTM

	1	315	321	322	323	324	331	332	341	342	351	358
in ${ }^{\text {a }}$). 37	-3. 34	-3.17	-0.05	-0.06	-0.27	0.05	0.44	-0.13	0.36	0.36	-0.07
Ra'). 21	0.3 M	-2.51	-C. 20	-0.21	-0.42	-0.10	0.29	-0.28	0.22	0.21	-0.21
-	v. 35	2.30	-C.Cl	0.12	0.11	-0.10	0.22	0.01	0.04	0.53	0.53	0.10
\because	J.6J	-3.36	-1. 16	-.7.05	-3. 04	-0.25	0.08	0.41	-0.11	0.37	0.37	-0.07
$2 i x$	-3. 10	-3.44	-0.71	-0.58	-0.59	-0.93	-0.49	- 3.10	-0.66	-0.17	-0.17	-0.60
- N	3.43	0.33	-3.15	-0. 02	-0.03	-0.24	0.08	0.47	-0. 10	0.39	0.39	-0.04
is	3.51	2.35	-). Cb_{6}	3.37	0.30	-0.15	0.17	0.56	-0.01	0.49	0.79	0.06
;5	3.23	-9.14	-. 2.24	-0.14	-9.15	-0.37	-0.05	0.34	-0.23	0.27	0.27	-0.16
$\therefore \because \because$). 41	-J. 7	-3.35	-0.21	-0.23	- 2.44	-0. 12	0.27	-0.30	0.20	0.20	-0.23
$: 1$	J. ${ }^{3}$	J. 15	-3.13	3.01	-0. 00	-0.21	0. 10	0.49	-0.07	0.42	0.42	-0.01
Ni	J.J」	-5.43	-3.52	-0.3B	-0.4C	-0.61	-0.27	0.10	-0.47	0.03	0.03	-0.40
\%	3.53	0.05	-2.03	0.10	O.C	-0.12	v. 20	0.59	0.02	0.52	0.52	0.09
: in	0.75	1.33	3.13	0.33	0.31	0.17	0.42	0.81	0.24	7.74	0.74	0.31
JP4	J.34	-0.15	-0.22	-0.39	-0.10	-0.31	0.01	0.40	-0.17	0.33	0.32	-0.10
. V	0.46	0.12	-0.10	0.04	0.02	-0.19	0.13	0.52	-0.05	0.45	0.45	0.02
Y/8	1.31	1.13	0.45	3.59	0.57	0.36	0.68	1.07	0.50	:. 00	0.99	0.56
3ヵ)	J.04	0.20	0.14	C. 27	0.26	0.05	0.36	0.75	0.19	0.68	0.68	0.25
3.2	0.47	0.36	-0.C9	0.05	0.04	-0.17	0.14	0.53	-0.03	0.46	0.46	0.03
Js	4.71	3. 16	0.08	0.22	0.20	-0.01	0.31	0.70	0.13	0.63	0.63	0.20
IJTAL	1.38	0.05	-0.09	0.07	0.04	-0.16	0.17	0.53	0.03	0.51	0.88	0.07

TMELEE． 9 （EOYT．）

	i），	31.1	3＋2	371	372	331	3 m 2	383	384	381	TOT	
in：	）．：4	1.11	1.21	－v．js	－0．10		3.11	J．44	0.37	0.15	0.16	
iii	3．11	$\cdots{ }^{1 /}$	1． 26	－0． 21	-7.25	2.31	J．1＊	J． 29	3.17	0.00	0.94	
－\quad ．	：．${ }^{\text {，}}$	1.42	1．13	U． 12	1.07	J．6	0.15	J．01	3.43	0.32	0.33	
－	－．${ }^{\text {，}}$	2.32	2．22	－3．75	－2．08	2．47	J．J2	J．+3	3． 33	0.16	0.16	
－${ }^{1}$	－．．．＇，	－3．22	－－：${ }^{\text {l }}$	－9．97	－1．63	－． 3.07	－3． 32	－ט．Jy	－0．22	－0．38	－0．34	
－－	－． 31	2． 34	2．24	－1．12	－． 3.77	1．61	J．J 4	J．+7	0.35	0.18	0.21	
\therefore.	J．${ }^{\text {a }}$	3．+3	3．33	0.07	1． 22	へ．53	）．13	J． 0	3.44	0.27	0.28	
，$:$	． 11	$\therefore .:$	）． 12	－）． 14	－）．${ }^{\circ}$	1．3＇	－J． 99	5．15	0.22	0.36	0.05	$\stackrel{80}{6}$
．．－	.11	$\therefore 15$	$\cdots c^{c}$	－．）．21	-1.27	3．3）	－0．15	0.27	0.15	－0．01	－0．10	
：	$\therefore 10$	． 97	2.27	こ． 11	－3． 04	リ．2	J．J7	1.50	9.37	2.21	0.24	
\therefore ：	－：． 0	－3．2	－1．12	－1．34	-0.04	1.12	－J． 31	J． 10	-0.02	－0．18	$-0 .<1$	
\cdots	．．＇s	1．05	1.37	$\therefore .1$	$\because . j{ }^{\text {c }}$	3.51	J． 10	J．59	2．+7	0.30	0.29	
\because.	$\ldots \cdot$	－ン・	－5．	i． 33	7．2？	2．94	3．3）	U．02	0.69	2.53	0.57	
：\cdot	$\cdots{ }^{\prime}$	3． 27	？．17	－－． 20	－ 214	1.42	－3．13	J．+3	J． 23	0.11	0.13	
＇－	． 17	J．－：	？．11	2．${ }^{\circ}$	－7．＾：	$\bigcirc .55$	J． 11	0.53	0.43	0.24	3.26	
\because	$\ldots, 1$	吅。		$\bigcirc 5$	ท．5？	1．07	v．04	1.07	3.95	0.78	0.83	
ここ	$\cdots 1$	－t，s	？${ }^{\text {c }}$	3.27	2． 7	1.73	J．3；	0.70	0.63	0.47	0.49	
；\cdot	冫．${ }^{\text {P }}$	2.1	－． 31	）． 5	－＇．｀＇	へ．う	3.11	Ј．54	0.11	0.25	0.31	
＇；	［．i）	J．je	J．4．	$\therefore .2$	$\therefore 1 t$	3.73	J．cio	0.71	0.53	0.42	0.40	
：．．．in	J．17	J．du	3． 21	2.15	． 9.07	2．5	1.14	0.53	0.45	0.27	0.43	

TABLE P．1．）

fy ISIC sectop iv the miJUf ：y ilstnialized Cu＇Jmaies

$$
\begin{aligned}
& \text { (:) M Tu: IV TlE PTS }
\end{aligned}
$$

	1	31）	321	322	323	32.4	131	332	341	342	35＾	35B
	$\ldots 11$	－1． 52	－ 3.41	－0． 07	－4．36	－3．27	-0.72	－5．05	-0.13	0.36	－0．02	－0．05
n an	－1．1J	-3.01	－． 319	－3．3	－1．49	－0．97	-1.15	－0．44	－3．38	－0．65	－2．71	－0．96
\therefore 。	－3．12	－3．00	-1.55	$-2 .+7$	$-1 . h^{2}$	-1.41	－2．24	－3．00	－4．52	－3．91	0.16	0.11
\therefore	－1．3：	－1．45	-1.62	-1.33	-1.60	－0．21	－0．74	－2．26	-1.77	－0．6，9	－2．63	－0．00
$\therefore-1$	－2．ai	－2．35	－2．07	－3．17	－2．13	－0．78	－1．26	－2．77	-2.36	－1．05	－3．39	－c．${ }^{-2}$
$3 \sim$	－1．71	$-2 .-5$	－2．95	-1.99	-1.77	－0．24	－0．38	－2． 21	－2．72	－1．14	－2．65	－0．0
$!\mathrm{r}$	－1．31	－1．50	－ 0.72	-2.09	$-1 . c 8$	－9．31	－J． 7	－2．11	-1.79	－0．30	-2.39	0.14
1 5	－．．．3）	－1．7i	－9．63	－1．75	-1.66	-3.37	－1．31	－2．33	-2.00	－0．89	－2．36	0.04
1：	$-1 . \therefore 1$	－2．ゴ	－＇．4i	-2.92	－3．64	－3．44	-0.30	－2．31	－2．91	－0．58	－2．61	－0．23
i．	－1．s）	－1．64	－1．11	－1．82	-1.99	0.13	－J．Jy	-2.10	-1.14	－0．46	－2．56	－0．31
$\therefore 2$	-1.36	－2．54	-2.00	-2.45	－7．4	－0．97	－1．06	－2．57	－2．50	－1．23	－3．37	－0．37
\therefore	－1．st	－2．34	-1.43	-1.27	－1．46	－3．1？	－3．00	－2．08	－1．57	－0．64	-2.76	0.09
PI	－1．3i	－1）．at	-3.61	－0． 35	－2．62	－0．27	0.32	－2．13	－3．00	0.115	－0．51	0.31
13	－3． 97	-3.10	－2．14	0.01	-10	－3．36	0.01	－2．11	－0．17	0.23	－0．93	0.03
に	-1.01	-3.17	－3．0．${ }^{\text {d }}$	-2.12	0.02	－2． 55	－0． 14	－0．90	－0．38	0.45	－1．22	－0．00
\％．0．	J．セy	－0．32	-1.73	-5.17	－0．18	－0．3）	0.29	$-1 .<6$	-0.47	1.00	－0．37	0.56
3 nc	0． 39	0.15	0.02	0.25	$-r .51$	－3． 07	3.17	－0．57	-0.40	0.68	－0．71	0.25
3d＇	－－ $1+$	－7． 12	-1.00	－2．09	－7．64	－3．2）	－：． 57	－3．00	－2．19	0.26	0.49	0.03
J；	3.25	-1.70	-2.63	－1．36	-1.12	－0．05	－1．52	－3．00	－0． 16	0.12	-0.72	0.19
IJILL	-0.72	－1．50	－1．69	－1． 30	－1．39	－0．23	-0.85	－2．56	－1．06	－0．22	-1.48	0.09

TARLE E． 10 （COMT．）

	355	jon	1f 2	371	372	381	382	363	384	381	TOT
4LA	-2.00	0.20	0.21	－0．05	－1．15	0.13	－0．25	0.42	－0．36	－0．03	－0．88
AIA	－3．47	－2．54	－3．85	－0．57	-1.40	－7．15	－4． 11	－3．08	－1．74	－4．39	－2．14
－ 5	－4．4う	-2.35	－3．3）	－1．10	0.07	－4．28	-1.33	－5． 21	－0．11	-2.80	-1.56
ミこ	－1．19	－0．34	-1.84	－1．29	－0．49	－1．73	－1．90	－1．24	－1．43	－2．57	－1．59
Bua	－2． 1	-1.40	－2．C5	-1.77	－0．93	－2．05	－2．50	－2．10	－3． 10	－2．46	－2．38
しะ．	-1.85	－1．25	-1.76	－1．41	－1．46	－1．67	－1．84	-1.54	－0．85	－3．36	-1.79
冗،	-1.21	$-1.2 t$	－1．95	-1.22	-0.46	－1．59	-1.75	－1．35	－1．57	－2．55	-1.42
いご？	－1．61	-1.46	－1．$=1$	-1.40	-0.59	－1．95	－2．05	－1．37	－1．78	－3．15	－1．79
It	－1．32	－1．27	－1．96	－1．54	-1.46	－1．84	－1．95	－1．82	-1.11	－4．24	－2．19
： 1	－－． 0	－3．34	－1． 56	－0．98	－0．44	－1．67	－1．51	－0．71	－0． 10	－2．91	－1．33
AL	-1.34	－0．73	－1．77	-1.66	－1．11	－1．93	－2．30	－1．90	-1.73	－3．38	－1．96
Jí	-0.32	－0．31	-1.95	－1．22	－0．24	－1．01	－1．90	－0．96	-1.45	－1．51	－1．47
ここV	3.30	－3． 38	－1．9？	－1．09	-2.12	－0．8．	－2．01	－2．20	－1．38	－4．13	－0．87
J．${ }^{\text {a }}$	-3.15	J． 15	－2．C5	－0．57	－0．17	－1．17	－2．07	－0．98	－3．97	－1．02	－1．01
V	Ј． 37	-7.53	-1.25	-0.72	－4．77	-1.87	－4．59	－0．01	－0．23	－1．62	－0．73
シjn	1.31	3.04	－1．42	0.09	0.33	－0．65	－2．67	－0．47	－0．31	－0．60	－0．09
；${ }^{3}$	j． 22	0.41	-1.48	－0．53	0.02	－0．46	－1．01	－1．58	－2． 23	－0．94	－0．46
jai	0.38	－．J．j6	-1.03	－0．34	－1．93	－0．47	－0． 19	0.15	－0．15	－0．13	－0．31
10	－ 3.52	-2.91	－3．50	－0．75	－0．33	－1．79	-1.34	－1．12	－0． 18	－2．91	－0．97
「JEha	－J．51	－1．31	－2．59	－0．91	－0．37	-1.74	-1.65	－1．26	－1． 21	－2．37	－1．21

table z. 11
percentage changes in hone prices onder plezible exchayge bates by ISIC SECTOR II the major indTStaialized COUMTRIES doe to The conbinto eppects op reducitious im tariffs AMD NTbS IM ThE ATM

	1	313	321	322	323	324	331	332	341	342	351	358	355	362	362
ALA	-7.17	-0.09	-0.15	-0.09	-0.86	-0.72	-0.15	-0.19	-0. 05	-0.00	-0.05	-0.02	-0.36	-0.01	-0.01
4T4	-3. 22	-0.40	-0.69	-3.54	-0.42	-0.74	-0.65	-0.69	-0.69	-0.47	-1.03	-0.37	-1.44	-0.61	-0.71
-uo	-3. 38	-0. 19	-0.42	-0.36	-1.Es	-0.66	-0.29	-0.48	-0.39	-0.64	-0.26	-0.23	-0.93	-0.41	-0.60
EC	-3.45	-0.42	-0.73	-0.60	-0.91	-1.27	-0.58	-0.45	-0.53	-0.30	-1.44	-0.21	-0.68	-0.28	-0.24
8LX	-1.34	-0.99	-6.94	-1.54	-1.38	-0.90	-34. 13	-0.95	-1.89	-0.87	-24.60	-3.41	- 1.75	-0.72	-0.74
2EY	J. 31	-0.40	-0.95	-1.04	-8.22	-0.74	-0.73	-0.86	-1.26	-0.59	-1.58	-0.29	-1.52	-0.50	-0.55
PE	-3.21	-0.23	-0.46	-0.50	-0.47	-0.38	-0.34	-0.39	-0.45	-0.26	-0.68	-0.09	-0.67	-0.21	-0.19
GPE	-3.83	-0.58	-0.82	-3.76	-1. 30	-0.69	-0.49	-0.51	-0.63	-0.35	-0.97	-0.25	-0.95	-0.37	-0.26
18E	-3. 36	-0.47	-0.75	-1.03	-0.69	-0.69	-C.41	-0.61	-0.34	-0.47	-1.03	-0.20	-0.78	-0.42	-0.84
IT	-3.43	-0.31	-0.24	-0.25	-0. 51	-4.02	-0.25	-0.17	-0.27	-0.15	-0.55	-0.15	-0.33	-0.11	-0.12
リL	-0.71	-0.68	-1.36	-1.42	-7.C 1	-C. 90	-1.03	-1. 18	-1.34	-0.57	-1.66	-0.41	-1.06	-0.96	-0.52
UK	-3. 12	-C.31	-0.31	-0.34	-0.36	-0.25	-0.29	-0.21	-0.30	-0. 16	-0.42	-0.02	-0.28	-0.10	-0.16
PIM	0.33	0.01	-0.05	-0.17	-44.c7	-0.63	0.18	-0.61	-0.02	-0.19	-0.92	-0.23	-0.56	-0.28	-0.44
JPI	-3. 20	-0.09	-0.10	-3.05	-0.13	-0.06	-0.04	-0.04	-0.03	-0.02	-0.12	-0.09	-0.06	-0.02	-0.01
$\Downarrow 2$). 27	0.32	-0.28	-0.25	-0.c6	-0.12	-0.01	-0.18	-0. 10	-0.04	-0.39	-0.04	-0.14	-0.15	-0.15
H08	3. 22	0.07	-0.91	-3.35	-51.29	-0.29	0.02	-0.40	-0.12	-0.15	-1.09	-15.73	-0.78	-0.18	-0.30
Sid	J.Jt	-0.05	-0.50	-3.19	-46.CA	-0.28	0.09	-0.68	-0.19	-0.19	-1.36	-0.52	-0.52	-0.23	-0.32
3NZ	J. 32	-0.14	-0.51	-0.77	-4.26	-0.61	-0.94	-0.90	-0.97	-0.44	-0.77	-2.57	-1.24	-0.74	-0.37
05	J. 11	-0.00	-0.12	-0.18	- 5.12	-0.14	-0.15	-0.09	-0.06	-0.05	-0.05	0.01	-0.10	-0.12	-0.08
TOTAL	-0.15	-0.18	-0.38	-3.34	-1.74	-0.70	-0.24	-0.27	-0.22	-0.14	-0.65	-0.18	-0.36	-0.20	-0.16

table E. 11 (COMT.)

	371	372	381	382	3E?	384	381	2	4	5	6	7	8	9	107
				-0.05	$0 . C 2$	-0.12	-0.06	-0.00	-0.00	-0.04	-0.01	-0.01	-0.01	-0.02	-0.05
4LA	-3. 33	-0.27	-0.06										-0.32	-0.29	-0.50
ATA	-3. 14	-0.02	-1.38	-1.03	-C.ss	-1.13	-1.52	-0.34	-0.25	-0.67	-0. 22	-0.19			
	-J. 20	-19.49	-0.59	-1.02	-1.CC	-0.46	-81.78	0.12	-0.06	-0.33	-0. 11	-0.08	-0.16	-0.13	-0.95
						-1.65	-1.86	-0.09	-0.08	-0.22	-0.09	-0.07	-0.12	-0.14	-0.39
EC	-J. 71	-0.41	-0.38	-1.03	-0.39	-1.65		-0.09							
BLX	-13.92	-4.64	-1.11	-33.13	-1.77	-41.50	-10.34	-0.66	-0.27	-0.62	-0.25	-0.22	-0.35	-0.35	-3.56
DEY	-1.30	-0.79	-0.38	-1.10	-1.50	-1.83	-26.87	-0.20	-0.21	-0.44	-0. 19	-0.15	-0.26	-0.25	-0.73
PR	-3. 24	-0.26	-0.34	-0. 59	-0.36	-0.74	-0.56	-0.04	-0.06	-0.19	-0.08	-0.06	-0.10	-0.11	-0.22
GPR	-). 46	-0.46	-0.41	-0.61	-0.3 3	-0.74	-1.12	-0.27	-0.14	-0.27	-0.12	-0.10	-0.18	-0.18	-0.38
IRE	-0. 10	-0.73	-0.45	-0.67	-0.71	-0.74	-1.27	-0.15	-0.36	-0.46	-0.13	-0.07	-0.14	-0.22	-0.35
IT	-). 13	-0.11	-0.22	-0.22	-0.19	-0.23	-0.44	-0.14	-0.06	-0.13	-0.06	-0.04	-0.09	-0.09	-0.20
UL	-3. 54	-0.67	-0.87	-1.48	-0.90	-1.24	-7.86	-0.48	-0.18	-0.48	-0.18	-0.15	-0.23	-0.26	-0.60
UR	$-2 \cdot 10$	-0.11	-0.19	-0.25	-0.z1	-0.50	-0.45	0.05	-0.01	-0. 12	-0.05	-0.03	-0.06	-0.08	-0.15
PII	-). 47	-0.27	-0.58	-1.02	-1.89	-2.36	-2.62	-0.26	-0.04	-0.22	-0.08	-0.05	-0.11	-0.13	-0.27
JPY	-3. 33	-0.01	-0.04	-3. 12	-0.C6	-0.21	-0.21	-0.13	-0.02	-0.03	-0.01	-0.01	-0.02	-0.02	-0.06
12	-0.33	-1.22	-0.53	-0.75	-0.33	-0.31	-0.48	0.01	-0.02	-0.23	-0.04	-0.03	-0.05	-0.07	-0.09
M0:	-J. 49	-2.04	-0.59	-1.36	-1.36	-2.11	-74. 13	0.76	0.08	-0.15	-0.07	-0.02	-0.09	-0.09	-0.80
S10	-J.5;	-1.51	-0.41	-1.50	-1.58	-2.56	-81.25	-0.46	-0.07	-0. 18	-0.07	-0.06	-0.10	-0.10	-0.90
3d2	-1.04	-0.83	-0.74	-133.55	-1.15	-10.33	-24.33	-1.05	-0.23	-0. 30	-0. 10	-0.14	-0.18	-0.09	-7.78
0 S	-3.33	-0.06	-0.08	-0.11	-0.22	-0.16	-0.53	0.04	-0.03	-0.07	-0.03	-0.02	-0.05	-0.04	-0.05
rotal	-3. 31	-0.38	-0.24	-1.91	-0. 32	-0.74	-4. 12	0.01	-0.05	-0. 15	-0.05	-0.04	-0.07	-0.08	-0.27

TABLE E. 12

FERCENTAGE CHAMGES IY IMEEX OP IBPORT AED HOHE PEICES UNDER RLEXIBLE EXCGAMGE RATES BY ISIC SECTOR IM THE HANO IMDOSTEIALIZED COOMTEIES DOE IO IA COHBIMPD EFPECTS OF RECJCTIOMS IV TARIFPS AMD MTBS II THE 日T플

	1	310	321	322	?23	324	331	332	341	342	351	358	355	364	362
ALA	-3. 23	-0.13	-0.23	-0.09	-3.64	-0.66	-0.23	-0.52	-0.07	0.02	-0.04	-0.06	-0.73	0.01	0.04
ATA	-3.33	-0.40	-1.37	-0.41	-1.17	-0.64	-1.14	-0.61	-1.25	-0.52	-1.68	-0.62	-2.38	-0.97	-1.78
CsD	-3. 13	-0.22	-0.71	-0.38	-1.67	-0.95	-0.57	-0.81	-0.80	-1.07	-0.15	0.02	-1.76	-0.83	-1.62
$E C$	-3.08	-0.63	-0.86	-0.92	-1.16	-0. 30	-0.47	-0.75	-0.85	-0.31	-1. 30	-0.09	-0.17	-0.35	-0. 53
3LX	-1.75	-1.48	-2.12	-2.63	-1.92	-0.80	-1.59	-1. 39	-2.59	-0.91	-3.60	-0.55	-2.00	-0.93	-1.81
284	-0.30	-0.74	-1.77	-1.50	-1.E3	-0.39	-0.82	-1.37	-2.08	-0.64	-2. 22	-0.11	-1.72	-0.65	-1.30
18	-3.33	-0.34	-0.80	-0.79	-0.57	-0.36	-0.39	-0.71	-0.73	-0.26	-2.14	0.01	-0.85	-0.30	-0.40
672	-1.28	-0.75	-1.20	-1.10	-1.72	-0.52	-0.58	-0.91	-1.00	-0.37	-1.58	-0.08	-1.14	-0.51	-0.57
5. 18z	-3. 58	-0.67	-1.59	-1.79	-1.87	-0.61	-0.57	-0.99	-1.82	-0.49	-1.95	-0.22	-0.98	-0.68	-1.02
15	-3.57	-0.53	-0.42	-0.38	-0.77	0.09	-0.20	-0.25	-0.10	-0.15	-0.91	-0.07	-0.37	-0.10	-0.27
1.	-1.18	-0.99	-2.52	-2.17	-2.53	-0.70	- 1.05	-2.04	-1.92	-0.60	-2.74	-0.38	-1.26	-0.87	-1.19
0K	-3. 38	-0.54	-0.18	-0.56	-0.77	-0.23	-0.37	-0.34	-0.57	-0.17	-0.71	0.02	-0.34	-0.11	-0.62
114	J. 30	0.00	-0.21	-0.21	-3.C3	-0.52	0.21	-0.91	-0.19	-0. 18	-0.73	0.09	-0.19	-0.25	-1.22
JPI	-3. 25	-0.09	-0.11	-3.05	-0.12	-0.09	-0.03	-0.07	-0.04	-0.02	-0.19	-0.00	-0.06	-0.01	-0.05
12	J. 24	0.02	-0.67	-0.25	$0 . C 2$	-0.20	-0.01	-0.19	-0.11	0.01	-0.68	-0.01	-0.04	-0.19	-0.38
808	0.15	0.06	-1.35	-0.31	-0.69	-0.31	0.07	-0.64	-0.18	-0.06	-0.71	0.40	0.20	0.00	-0.83
Sud	0.11	-0.03	-0.23	0.06	-0.96	-0.13	0.10	-0.64	-0.22	-0. 13	-1.03	0.04	-0.22	-0.13	-0.88
5112	-3.04	-0.13	-0.75	-1.48	-0.93	-2.15	-1.09	-1.74	-1.37	-0.32	-0.03	-0.17	-0.47	-0.69	-0.77
35	1. 12	-0.04	-0.20	-0.31	-0.41	-0.12	-0.27	-0.09	-0.06	-0.04	-0.07	0.06	-0.14	-0.24	-0.17
rotal	-0.24	-0.27	-0.48	-0.51	-0.94	-0.28	-0. 27	-0. 42	-0.35	-0.16	-0.60	-0.01	-0.46	-0.28	-0.37

TABIE E. 12 (COMT.)

	311	372	J81	382	382	384	381	2	4	5	6	7	8	9	107
1i4	-3.03	-0.08	-0.05	-0.12	0.13	-0.17	-0.04	-0.00	-0.00	-0.04	-0.01	-0.01	-0.01	-0.02	-0.07
$\Delta T 4$	-3. 47	-0.45	-2.62	-3.32	-1.72	-1.50	-4.36	-0.34	-0.25	-0.67	-0.22	-0.19	-0.32	-0.29	-0.74
CWD	-0. 39	-0.12	-1.04	-1.25	-2.ce	-0.30	-3.58	0.12	-0.36	-0.33	-0.11	-0.08	-0.16	-0.13	-0.28
LC	-3.45	-0.40	-0.51	-0.90	-0.c4	-0.98	-1.86	-0.09	-0.08	-0.22	-0.09	-0.07	-0.12	-0.14	-0.39
8LX	-1.6y	-0.97	-1.39	-2.77	-1.58	-3.48	-2.53	-0.66	-0.27	-0.62	-0.25	-0.22	-0.35	-0.35	-0.99
DEE	-1.33	-1.13	-1.09	-1.56	-1.53	-1.18	-3.60	-0.20	-0.21	-0.44	-0.19	-0.15	-0.26	-0.25	-0.57
PR	-3.49	-0.33	-0.44	-1.24	-0.55	-0.93	-1.36	-0.04	-0.06	-0.19	-0.08	-0.06	-0.10	-0.11	-0.30
GFR	-). 16	-0.52	-0.57	-1.06	-0.49	-1.00	-2.77	-0.27	-0.14	-0.27	-0.12	-0.10	-0.18	-0.18	-0.53
18E	-0.92	-1.55	-1.58	-1.84	-1.29	-0.93	-3.54	-0.15	-0.06	-0.46	-0.13	-0.07	-0.14	-0.22	-0.53
17	-3. 25	-0.42	-0.31	-0.58	-0.27	-0.20	-1.24	-0.14	-0.06	-0.13	-0.06	-0.04	-0.09	-0.09	-0.26
-	-J. 96	-0.95	-1.18	-2.11	-1.35	-1.57	-3.43	-0.48	-0.18	-0.48	-0. 18	-0.15	-0.23	-0.26	-0.71
UK	-J. <2	-0.14	-0.28	-0.66	-0.30	-0.68	-1.17	0.05	-0.01	-0.12	-0.05	-0.03	-0.06	-0.08	-0.22
P11	-J.69	-0.23	-0.63	-1.49	-2.c5	-1.90	-3.69	-0.26	-0.04	-0.22	-0.08	-0.05	-0.11	-0.13	-0.23
JPL	-). 34	-0.05	-0.05	-0.24	-0.c8	-0.30	-0.37	-0.13	-0.02	-0.03	-0.01	-0.01	-0.02	-0.02	-0.08
± 2	-3.50	-2.65	-0.67	-2.59	-C. 10	-0.28	-1.11	0.01	-0.02	-0.23	-0.04	-0.03	-0.05	-0.07	-0.14
808	-3. 15	0.09	-0.61	-2.12	-0.c5	-0.85	-1.32	0.76	0.08	-0.15	-0.07	-0.02	-0.09	-0.09	-0. 10
SUD	-J. 59	-0.32	-0.42	-1.21	-1.78	-2.41	-1.74	-0.46	-0.07	-0. 18	-0.07	-0.06	-0.10	-0.10	-0.33
juz	-3.53	-1.15	-0.69	-1.56	-0.E1	-2.22	-0.37	-1.05	-0.23	-0.30	-0.10	-0.14	-0. 18	-0.09	-0.37
JS	-3.06	-0.09	-0.13	-0.21	-0.31	-0.16	-1.44	0.04	-0.03	-0.07	-0.03	-0.02	-0.05	-0.04	-0.07
rotal	-3. 22	-0.21	-0.34	-0.59	-0.45	-0.48	-1.44	0.01	-0.05	-0. 15	-0.05	-0.04	-0.07	-0.08	-0. 20

TABLEF． 13
Aソま NEES IN TIE MTX

	1	31）	321	322	323	324	331	332	341	342	35A	35B
	4．－	$\therefore 1$	-7.7	2． 1	12.4	0.2	0.7	0.1	-9.1	0.3	10.3	－20．7
1．i	J． 1	11.7	$2^{4} \cdot 3$	$1{ }^{1+1}$	1.5	7．？	9.5	3.6	15．3	2.0	17.7	4.7
\because	1こ：	17．	2.7	14.7	7.5	9.6	41.3	0.3	148.3	3.4	27.9	99.2
\because	3）	4t1．4	c 13． 3	$-7: 4$	177.7	－？．．）	<8.3	150.5	109.7	71.6	1103.2	124.8
：ui	3． 2	＋$\downarrow \cdot \downarrow$	125．t	5：2．5	7.3	0.7	1． 3	19．9	22.4	4.8	151．8	－19．5
こ～：	2． 3	51.1	$1{ }^{6} .6$	23．3	11.4	2.7	2.4	12．7	5.5	2.2	24.1	12．0
t ．	11.7	F．J．J	76.0	20． 2	27.2	11.1	7． 2	13.2	20.0	14.5	167.6	41.9
$\cdots:$	4． 2	YJ． 0	1；1．1	1Jや． 3	2.6	9.0	Y． 3	50.8	26.3	18.0	343.8	26.4
iれこ	1．3	13.1	1C．＇i	13．4	2．5	1．7	0.2	0.7	1． 3	0.9	9.3	－1． 0
$\therefore:$	$\sim .9$	33．2	31.1	7r． 1	13.4	9.7	2． 1	30.5	3.5	7.2	70.3	35.6
λi	1J． 5	9j．	ご，	60.5	17.1	3.7	2.0	11.2	19.5	5.7	185． 1	－17．7
＇	1．1	37.1	47．c	43.3	14.2	3.3	1.9	11.4	11.2	18.2	149．2	47． 1
Ei：	C． 2	13.5	3.3	24.6	14．t	6.1	12.0	4.4	62． 2	1.5	7.9	9.0
J \mathbf{c}^{\prime} ：	1.3	－J． 5	-37.2	-2.5	-0.7	-4.4	0.3	1.9	-5.2	1.5	45.8	－1．0
S ：	0.3	6． 9	11．f	1． 1	1.4	-0.0	0.5	0.4	0.8	0.1	0.5	0.0
d） 3	．． 0	13.7	7.4	5.6	5． 6	0.7	2.9	4.0	29.2	0.7	19.2	45． 1
3． 2	3． 5	4.5	C． 8	P． 5	6.3	2.1	16.6	14．2	75.9	2.9	28.5	33.9
دスく	U． 3	13.4	17．6	15．2	1.5	2.3	2． 5	3.6	5.9	5.2	69.8	26． 2
15	35～1	43.0	42.5	33．3	$2^{9} \cdot 6$	1． 3	39.0	15．1	40.9	26.0	245.5	160.6
1JIAL	412.3	592.4	655．2	594．4	188.9	67.6	153．3	198． 1	482.7	115.3	1576．4	481.8

TABLE E. 13 (CONT.)

	355	361	362	371	372	381	382	383	384	388	$50 \pm$
11A	0.3	2.0	C. 1	-0.7	30.8	2.6	0.7	1.7	2.0	11.1	52. 5
ATA	8.5	8.4	1.8	19.7	4.5	21.6	44.7	27.5	15.5	52.6	319.0
CxD	18.8	32.7	3.0	18.0	68. 1	21.2	87.7	42.8	!08. 2	268.4	1114.9
E=	226.6	137.1	$+1.4$	289.9	66.8	471.7	802.8	586. 5	:044.7	1051.0	8018.5
BLX	22.9	8.0	5.1	60.1	4.5	41.3	48.6	47.1	146.2	92.2	904.8
DEN	2.8	5.3	1.1	5.4	3.0	13.6	45. 1	19.f	10.9	51.3	323.4
18	63.3	22.6	11.9	101.2	17.2	34.0	175.9	109.8	254.0	173.5	1568.9
GPR	55.1	38.2	9.8	60.9	16.4	157.3	272.3	210.9	365.7	267.2	2322.8
IRE	2.7	2.2	0.4	0.3	2.0	4.5	5.3	4.8	1.9	11.7	86.0
If	24.1	30.2	4.8	23.0	4.4	71.0	76.9	46.7	74.4	90.4	767.5
NL	23.2	8.5	2.5	10.3	B. 8	30.4	42.0	58.7	55.5	162.4	901.2
OK	32.4	22.1	5.7	28.8	10.6	69.6	136.7	88.8	136.0	202.2	1143.9
PIN	0.8	1.6	1.4	10.0	7.3	10.0	26.7	13.6	29.8	16.0	276.8
J? ${ }^{\text {P }}$	19.3	12.6	1.4	-45.7	-4.0	54.2	11.5	152.9	210.0	109.6	520.8
N 2	0.1	0.1	C. 1	0.2	8.9	1.0	1.8	0.5	0.5	7.1	43.8
M \(
) R	1.9	5.5	0.5	32.5	42.3	13.3	23.2	14.6	48.8	28.5	352.6
SWD	8.3	5.6	2.3	66.1	23.3	39.9	108.8	75.0	152.7	65.5	748. 5
3d2	2.4	3.3	0.3	6.4	9.8	26.6	91.9	40.7	7.7	130.3	483.5
UJ	36.2	34.5	11.3	50.1	28.4	112.2	365.7	268. 8	411.9	475.4	2822.5
roral	323.0	243.5	64.1	446.6	286.2	774.4	1565. 5	1224.4	2091.8	2215.5	14753.5

TABLE E． 14

CHANGES IM IMPORTS ONDER PLEXIBLE EXCHAMGE RATES BY ISIC SECTOR IA THE MAJOR INDUSTRIALIZED COONTRIES DUE IO THE COMBINED EPFECTS CF REDOCTIOMS IM TARIFPS

 AND MIBS IM THE RTI| | 1 | 310 | 321 | 322 | 323 | 324 | 331 | 332 | 341 | 342 | 354 | 358 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALA | 8.2 | 4.6 | 0.5 | －0．1 | 0.9 | －0．4 | 2.7 | 9.1 | 0.6 | －1．8 | －1．4 | 0.2 |
| A［ ${ }^{\text {a }}$ | 5.5 | －0．5 | 20.2 | －0．2 | 3.5 | 1.0 | 0.9 | －0．6 | 7.3 | 0.6 | 35.2 | 11.4 |
| こ．vo | 11.0 | 7.9 | 21.3 | 7.8 | 10.0 | 4.9 | 16.8 | 20.2 | 41.3 | 55.4 | 8.8 | 63.1 |
| Eこ | 399.1 | 455.9 | 453．5 | 396.3 | 134.5 | －2．1 | 89.6 | 140.6 | 360.6 | 52.0 | 1285.8 | 150.6 |
| BLX | 37.0 | 49.5 | 77.1 | 43.6 | 5.5 | 0.0 | 8.2 | 18.3 | 30.5 | 7.6 | 101.4 | 30.3 |
| DëN | 16.0 | 14.6 | 22.5 | 10.1 | 10.9 | －0．3 | 4.5 | 5.7 | 15.7 | 2.6 | 38.9 | 5.4 |
| FR | 49.1 | 57.6 | 69．8 | 66.9 | 18.9 | 0.4 | 18.7 | 37.9 | 69.3 | 14.4 | 250.2 | 1.7 |
| GFR | 133.5 | 94.8 | 117.2 | 149.1 | 64.1 | －1．6 | 24.4 | 38.6 | 108．1 | 12.8 | 364.6 | 36.1 |
| IRE | 3.8 | 7.4 | 10.5 | 7.2 | 1.2 | －0．1 | 0.5 | 1.0 | 3.2 | 0.2 | 13.6 | 0.2 |
| IT | 60.1 | 53.6 | 40.5 | 17.1 | 15.2 | 0.1 | 9.8 | 3.6 | 27.8 | 2．4． | 185.5 | 36.7 |
| NL | 50.7 | 62.2 | 74.7 | 57.6 | 7.6 | 0.0 | 10.7 | 22.8 | 51.3 | 6.7 | 133.6 | 34.1 |
| UK | 43.9 | 116.4 | 41.0 | 44.7 | 11.0 | －0．6 | 12.7 | 12.7 | 54.7 | 5.3 | 198.2 | 6.1 |
| PIX | 3.5 | 0.4 | 12.2 | 2.8 | 7.0 | －0．0 | 3.0 | 3.0 | 5.3 | 1.9 | 22.7 | 10.6 |
| JPN | 39.0 | 2.0 | 2.1 | 1.4 | 0.0 | 1.9 | －0．2 | 6.8 | 2.8 | 0.3 | 65.0 | 37.9 |
| ± 2 | 1.1 | 0.2 | 3.1 | －0．0 | 0.0 | 0.4 | 0.1 | 0.0 | 0.2 | －0．7 | 8.2 | －0．3 |
| MOR | －C． 8 | －0．2 | 10.6 | 3.3 | 5.1 | 0.2 | 2.1 | 6.0 | 8.5 | 1.3 | 27.0 | 34． 3 |
| SUD | －3．4 | －2．6 | 14.1 | 3.9 | 11.0 | －0．0 | 5.5 | 12.1 | 15.3 | 4.4 | 64.7 | 51.5 |
| Sさl | 2.5 | －0．1 | 12.8 | 26.7 | 4.2 | 8.2 | 4.6 | 17.6 | 21.3 | 6.9 | 32.5 | 48.0 |
| 3） | －9．5 | 95.6 | 37.1 | 168.4 | 13.1 | －1．7 | 54.1 | 0.0 | 15.7 | -0.8 | 83.6 | －7． 3 |
| tJtal | 456.1 | 563.4 | 587.4 | 610.2 | 189．4 | 12.3 | 179． 1 | 214.8 | 478.7 | 119.6 | 9632．1 | 399．9 |

TABLE E. 14 (COMT.)

	355	361	3 $¢ 2$	371	372	381	382	383	384	384	T0T
ALA	16.6	-0.9	-0.3	0.2	0.7	-2.0	3.5	-6.5	12.0	-0.0	46.4
ATA	15.0	10.4	2.9	0.5	3.7	68.4	38.9	32.4	23.0	25.9	305.5
こッ0	77.0	18.0	7.4	11.5	11.1	135.2	118.2	177.5	88.3	184.5	1097.3
R:	191.7	149.0	39.9	333.4	180.7	395.3	782.9	445.5	1044.7	675.2	8154.4
BLX	13.5	13.7	2.6	24.1	19.0	37.1	90.0	55. 9	167.0	65.6	897.5
DEN	5.7	5.4	1.2	11.6	4.C	14.8	32.0	27.3	34.9	26.2	309.7
PR	36.4	30.4	8.8	74.1	29.0	82.2	150.1	90.9	288.0	139.6	1584.4
GFP	86.3	58.7	12.9	117.5	73.2	116.6	260.4	104.3	273.6	206.2	2451.4
IRE	1.4	1.0	0.5	2.4	0.7	1.9	6.1	4.2	3.6	11.6	82.2
$1 T$	13.7	6.0	4.5	45.9	24. 1	36.7	51.3	35.3	34.7	69.5	773.9
NL	16.9	27.0	4.1	20.7	9.9	54.3	78.0	64.7	61.3	62.1	910.9
UK	17.8	6.8	5.3	37.1	20.8	51.7	115.0	62.8	181.6	94.4	1144.5
PIN	2.9	3.0	C. 4	9.0	2.4	10.7	40.1	37.4	58.7	32.0	269.1
JPsi	2.8	-2.1	2.2	2.8	-4.4	15.0	114.2	61.6	184.8	112.8	648.9
N 2	-0. 9	0.5	0.3	0.5	2.4	5.0	13.1	1.2	-0.1	2.6	36.8
S 3 S	2.7	3.6	C. 5	13.0	12.7	18.3	59.8	31.7	68.4	25.6	333.7
3d0	7.1	6.5	1.4	41.1	19.0	21.8	111.4	103.7	194.7	66.0	749.1
SHz	6.7	3.5	C. 5	11.6	6.4	13.4	80.8	35.8	106.9	35.7	491.5
05	45.3	75.1	12.0	26.3	20.4	122.5	210.2	394.7	332.4	1239.9	2927.0
roral	366.8	271.5	67.3	450.1	255.1	803.7	1573.1	1315.2	2113.5	2400.3	15059.6

Bibliography

Balasss, B. "The 'New Protectionsin' and the International Economy," Journal of world Trade Law, September-October 1978.

Baldwin, R.E. Nontariff Distortions of International Trade. Washington: The Brookings Institution, 1970.
\qquad . "The Multilateral Trade Negotiations: Towards Greater Liberalization?" American Enterprise Institute, 1979.

Baldwin, R.E., J.B. Mutti, and J.D. Richardson, "Welfare Effects on the United States of a Significant Multilateral Tariff Reduction," April 1978, in process.

Blackhurst, R., N. Marian, and J. Tumilr, Trade Liberalization, Protection'sm, and Interdependence. GATT Studies in International Trade, No. 5. Geneva, November 1977.

Brown, P. and J. Whalley. "General Equilibrium Evaluations of Tariff-Cutting Proposals in the Tokyo Round and Comparisons to More Ext ensive Liberalization of Trade," December 1978, in process.

Cline, W.R., N. Kawanabe, T.O.M. Kronsjo, and T. Williams. Trade Negotiations in the Tokyo Round: A Quantitative Assessment. Washington: The Brookings Institution, 1978.

Deardorff, A.V., R.M. Stern, and C.F. Baum. "A Multi-Country Simulation of the Employment and Exchange-Rate Effects of Post-Kennedy Round Tariff Reductions," in N. Akrasanee et al. (eds.), Trade and Employment in Asia and the Pacific. Honolulu: University Press of Hawail, 1977.

Deardorff, A.V., R.M. Stern, and M.N. Greene. "The Implications of Alternative Trade Strategies for the United States," in D.B.A. Denoon (ed.), An American Response to the New International Economic Order. New York: New York University Press, 1979.

Houck, J. "The Tokyo/Geneva Round: Its Relation to U.S. Agriculture," prepared for the Committee on Finance, U.S. Senate, May 1979.

Lowinger, T.C. "Discrimination in Government Procurement of Foreign Goods in the U.S. and Western Europe," Southern Economic Journal, 42 (January 1976), pp. 451-60.

Murray, T. and I. Walter. "Special and Differential Liberalization of Quantitative Restrictions on Imports from Developing Countries," in L. Perez (ed.), Trade Policies Toward Developing Countries: The Multilateral Trade Negotiations. Washington: Agency for International Development, 1978.

Nowzad, B. The Rise in Protectionism. Pamphlet Series, No. 24. Washington:
International Monetary Fund, 1978.
ORCD. Labour Force Statistics. Paris, annual.
Schnittker Associates. "Multilateral Trade Negotiations: Results for O.S. Agriculture," prepared for the Congressional Research Service, April 1979.

United Nations. Yearbook of Industrial Statistics. New York, annual.

[^0]: Source: Based upon complaints received by STR from U.S. exporters during 1975-78.

[^1]: a Total allocated to member countries based on 1976 GDP.
 ${ }^{\text {b }}$ Total for Nordic countries allocated based on 1976 GDP.
 Estimated based on news reports.
 Source: Based on data supplied by STR.

[^2]: "Canada was alleged by oae respondent to use a "fair market value" system for valuing aany types of imports of manactures, with uplifts of up to 20 per cent.
 ${ }^{b}$ According to one respondent, Japan comonly applies upilfts in many industries, the actual amount deing subject to negotiations from company to company. Another respondent reported that, in phareaceuticals where a royalty was to be paid by the importer to licensor outside Japan, an uplift of $20-30$ per cent was coman. This was because apanese law provided for a ducy assesssent to cover separate payment of royalties.
 ${ }^{\text {C }}$ According to one respondent, British customs authorities allegedly disregard the price shown on the invoice. They take the sales value of the goods imported and then subtract selling and admaistrative expenses at a percentage which is Lsually 17.5 per cent. This amount less the estianted duty payable constitutes the dutiable value.
 ${ }^{\text {duplifts are generally applied for many industries according to one respondent. }}$ They take the form of "check price" for specific items, with duties being assessed on the chack price regardless of the actual value of the product.
 e According to one respondent, the Mexican customs authority figures the dutiable value to be the higher of either the "established minimu legal price" or the actual invoice price. Another respondent reported that official values vere often deterained on the basis of physical weight, which had no clear relation to variations in the degree to which the iaported good had been processed.
 $f_{\text {One }}$ respondent alleged that uplifts in Spain seen to be directed at drugs more than other industries, with the percentage uplift beine subject to negotiation by the company. This was described as effectively taking "the form of blackanil."

 Source: Based upon responses from corporate members of a Joint Industry Horking Group on Custome Valuation, unier the direction of the Manager of Custons International Trade Affairs of The Proctor \& Gamle Company.

[^3]:

